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Parallel Algorithms

Lecture 1: introduction

Ronald Veldema

Administrative
• 1st or 2nd week of November

– No lecture, I’m in boston
– Last lecture: invited speaker?

• I also do the exercises
– Send me an email if you want to participate

• My email = veldema@cs.fau.de
• Mail your:

– Name, Email address, matricel number

– Slides
• http://www2.informatik.uni-

erlangen.de/~veldema/parallel_algorithms/index.html

Administrative
• Pruefungen etc

• Mundliche pruefung
– Email prof. philippsen at the end of the lecture series for an apointment
– Me = veldema@cs.fau.de

• 2+2 SWS, 4 leistungs punkte
• Prof. Philippsen (philippsen@cs.fau.de)

– For Special circumstances….
• Website informatik 2 (www2.cs.fau.de) -> Lehre -> Studienplan

&Hauptdiplomspruefungen
– If computational engineering, wirtschafts inf. Etc
– Scheine (benoted, unbenoted, etc) 

Books
<available in my room: 05.155> 

• Algorithms Sequential & Parallel
– Russ miller, Laurence Boxer

• Designing and Building Parallel Programs
– Ian Foster

• An Introduction to Parallel Algorithms
– Joseph Jájá

Why should I care ?

• how long would SETI@home take without 
parallel computing ?
– Already spent 1625048 years…
– how does seti@home work ?

• My algorithm is too slow, but I’ve tried everything 
else already !
– Real time…
– Years to complete…

• Most programming environments have *some* 
support for parallel programming already…

What is parallel programming ?

• What is a parallel algorithm ?
– program that runs on a parallel machine
– ….and processors cooperate to solve a problem

• Shared or distributed memory ?
– This course: both
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What shall we talk about in this 
course ?

• Parallel programming techniques
• Algorithms used in parallel programming
• Parallel computing environment

– Software (languages, libraries)
– Hardware (networks, machines)

• Lightly touch on theory
• NOT Prof. Schneiders course 
• Follow up on “cluster computing” course

Non-deterministic Turing 
Machines (1)

• The ultimate parallel machine ?
• Deterministic turing machine

– State + transition rule next state
• Non-deterministic turing machine

– State + transition rules alternative next states
– Try all alternative next states in parallel

• If one of these accepts/halts, the NDTM 
halts/accepts

Non-deterministic Turing 
Machines (2)

• NDTM
– Set of states Q, 

• startstate s in Q
• F in Q are accepting states (input accepted by program)

– Tape alphabet G
• B = blank / no-op

– Input alphabet S
– D: (Q,G) (Q, {L,R,S})

• Every NDTM can be simulated by a DTM
– A DTM will take more time than the NDTM

• Question: how much more ? 

Non-deterministic Turing 
Machines (3)

• NDTM
– Set of states Q, 

• startstate s in Q
• F in Q are accepting states (input accepted by program)

– Tape alphabet G
• B = blank / no-op

– Input alphabet S
– D: (Q,G) (Q, {L,R,S})

• Every NDTM can be simulated by a DTM
– A DTM will take more time than the NDTM

• Question: how much more ? 
– This is exactly the question of P=NP ($1M prize money)

Non-deterministic Turing 
Machines (4)

• NDTM = quantum computer ?

Non-deterministic Turing 
Machines (5)

• NDTM = quantum computer ?
– No: NP complete problems can not be solved in P 

time by a quantum computer
– (there are also problems a quantum computer can 

solve in P but a NDTM not) 



3

Quantum Computing
• Pairs of atoms/light ‘particles’ can be brought into an 

‘entangled’ state
– One particle magically ‘knows’ what happens to its 

brother/sister particle

• Qubits = 0, 1 or in between. Each state has a 
probability attached

• Generic operation of searching on a quantum computer
– Try all values at the same time, one is ofcourse ‘special’
– When reading the output, we get the selected answer only

• Why ? The selected answer is entangled with the ‘wrong’ answers
• More later…

In practice...
• take a problem
• divide in to small pieces (“tasks”)

– called “task decomposition”
• connect pieces

– called “task dependency graph creation”
• combine pieces

– “coarsening”
• distribute pieces over processors
• combine results

why are some problems harder to 
parallelize than others ?

• hard to subdivide problem
• one piece is dependent on results of other pieces
• is in parallel but requires extreme amounts of 

communication between tasks
• complex transformation of sequential algorithm 

needed
• Many tradeoffs, creating good parallel programs is 

as much art, skill as technique…

limits to parallelism ?

• given problem with 3 components A,B,C:
– seq(A).par(B).seq(C) then 

time(A)+time(longest component B)+time(C)
– spawn time, sequential parts, reconcile
– scalability: will resources scale ?

• network, routers, mean time between failures 
(MTBF)

• will it run with 1000 cpus, a million ?

Parallel vs Sequential ?
• Theory:

– Parallel Computation Thesis:
• Time on any parallel machine model is equivalent to sequential 

log(space)
• Sequential space is a polynomial of parallel time.

– This is a ‘thesis’ (unproven claim) by Turing&assoc.
– Idea: every processor needs a little private scratch space

• Using Turing machine: each machine needs ‘scratch’ space to 
hold compute state (temporary variables).

• One processor: 
– need a lot of scratch to handle all input
– Each scratch variable is used a lot

• Many processors: scratch space is made smaller per processor 

Concurrency Control (1)
• programmer implied program invariants:

– stack: after push, size = old_size + 1
– list: tail has no next, head has no previous

• invariants broken in intermediate program 
states
– intermediate program states are observable 

when running in parallel..
• consistency control: restrict observability of 

intermediate states
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Concurrency Control (2)

• Ways to perform concurrency control
– Atomic actions using

• Monitors
• Locks
• Semaphores
• (all these will be handled in lecture on multi-

threading)
– Detection & recovery
– (Temporary) Privatization

Concurrency Control (3)

• Detection & recovery
– The hacker’s way of concurrency control
– Perform your operation as usual but 

• Record state before operation
• afterwards check if the operation was indeed 

successful
• If not entirely successful, try to patch using the 

saved state

Concurrency Control (4)

• Example: add node to linked list
– Before adding, record what the old list-tail was
– Afterwards, atomically test if you are the tail 

and if not, atomically restore list state 

Concurrency Control (5)

• Try and avoid thread synchronization if 
possible (expensive operation)
– Example: list manipulation using ‘dijkstra’s

observation’
• When using a producer consumer pattern, we can 

avoid synchronization when “length(list) > 
number_of_tasks” 

– When #consumer tasks > 1 then atomic test-and-set 
required to mark list elements as ‘taken’

Concurrency Control (6)

• Privatization
– Instead of maintaining a single shared resource for all 

tasks, give each task his own private resource
– Example:

• Maintain a list of best solutions for a search algorithm
– Shared list of best solutions

• protect list integrity each ‘add’
– Each search task has own list of best solutions thusfar

• Lists of each task merged after everyone is done 

Bad concurrency control (1)

• Race conditions
– Two cpus concurrently try to read or write 

some data where atleast one is a write
– No concurency control over that data item

Cpu 0                    Cpu 1
X = 5                      print X
Y = 3                      Y=6

Prints old or new X ?
Is the resulting Y from cpu 0 or 1 ?
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Dead lock (1)

• A number of cpus concurently try and ackuire
some resource which won’t be available

• All cpus wait for the resource to become available

Cpu 0                             Cpu 1
Lock N                            Lock M
Lock M                           Lock N
Print X                            Print X
Unlock M                       Unlock N
Unlock N                        Unlock M 

Dead lock avoidance: Java ?

• Can the previous example be written in Java ?
• Can you write a dead-lock in Java using 

synchronized  blocks ?

Live lock

• Cpu is inside a set of states S
– S has no transition out of S
– All states in S perform no useful action
– in each state in S there is a transition to another 

state in S

degrees of parallelism (1)

• fine-grained parallelism
– tasks communicate often (per millisecond)

• coarse-grained parallelism
– tasks communicate often (every second)

• embarrassingly parallel
– tasks communicate every hour / at startup & 

shutdown
– “independent tasks”

degrees of parallelism (2)

• Maximum
– trees: number of leaves in task graph

• average
– trees: number of leaves in task graph / 2

+

++

+ ++ +

Deterministic algorithms

• deliver the same answer each run
• sometimes not most efficient as non-det.
• some reasons for non-determinism

– no influence over thread scheduler
– don’t know when a message over a network 

arrives 
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‘easy’ parallel problems

• parallel sorting
• parallel search for a data item
• parameter sweep

– given a function F, find interesting spots in F(x) 
by permuting over all ‘x’

‘hard’ problems

• molecular dynamics
– each molecule has some influence on other 

molecules requiring lots of communication
– more in later lecture in this series.

• fluid dynamics
– pressure in one spot has influence on neighbors, 

which in turn has some influence on their 
neighbors

Parallel programming machines

• shared memory machines
– architecture/software simulates a shared global 

memory for all cpus: each cpu ‘sees’ the same 
memory.

• distributed memory machines
– communication between processors is by 

explicitly sending messages
– can simulate a shared memory machine on top 

of a distributed memory machine !

Shared memory machines: 
threads

• Threads share everything inside a process 
except the call stack and their own registers

• Memory and file descriptors are shared
• More on threads in later lecture

Void foo() {
// compute

}

Void main() {
Create_thread(foo);
Create_thread(foo);

}

Distributed Memory Machines

• Message passing
– Location independence

• We don’t need to know the address of the machine 
to send a message to. Instead use logical machine 
id’s

– Network independence
• Don’t need to know about underlying network layer 

(TCP/IP, myrinet, ATM,  infiniband, etc)

Distributed Memory Machines: 
function shipping

• Function shipping
– (temporarily) let the thread (of control) move to 

the machine that has the data
– Remote Procedure Call (RPC)

Machine 1 Machine 2
move

move
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Distributed Memory Machines: 
Data shipping

• Data shipping
– move the data that the thread currently needs to the 

machine running the thread
– access object fault -> send_data_request-> 

reply_with_data -> map object

.req
reply

Machine 2Machine 1

What kind of machines do we 
have ?

• Irrespective of processor interconnect:

1 cpu N cpus
1 data flow         SPSD     MPSP
M data flows      SPMD    MPMD

(sp/mp = single/multiple program,
sd/md = single/multiple data streams

Parallel programs in the real world
• In-order execution
• Out-of-order execution
• Super scalar machines
• Predication
• Symmetric multi processor (SMP) machines

• VLIW (Intel's IA64)
• Cluster computing
• Grid computing

Measuring Parallel Performance
• Speedup

– (Time with N cpus) / (time with 1 cpu)
• Time with 1 cpu = with fastest sequential algorithm

– Super linear speedup
• Happens when bottleneck is resolved when using 

multiple processors
– Example: problem requiring 500MBytes of memory swaps 

on a machine with 256MBytes of memory but will fit in 
memory when using two machines.

• Efficiency
– (Speedup with N cpus) / N

Why can’t every algorithm be 
parallelized ?    (1)

• When task X depends on the results of all 
tasks 0 … (X-1)

• Data dependencies
– True data dependencies:

• Y = X + 1
• Z = Y + 1

– False data dependencies:
• X = X + 1
• X = 3

• Note: you can still use a different algorithm
that is parallelizable !

Why can’t every algorithm be 
parallelized ?    (2)

• Resource dependencies
• X = X * 10
• Y = Y * 3
• Can’t run in parallel if machine only has one 

multiplication unit

• Procedural dependencies
• Void foo() { X = X + 1;  }
• Void zoo() { Y = Y + 1; foo(); }



8

Reasons for badly performing 
parallel algorithms

• Bad load balancing
– One cpu does all the work while others do nothing

• Bad choice of granularity
– Too many messages sent to achieve high performance

• Parallel algorithm is far worse than sequential 
algorithm on 1 cpu

• Work performed multiple times


