Parallel Algorithms

Lecture 2: Theory Overview

Ronald Veldema

Domain or Functional Decomposition ?

- Domain: partition data of the algorithm Subdivide input
- Functional: partition algorithm, then deal with associated data
 - Pull apart code (loops, recursion) to allow parallel execution
- Can mix both !

Exploratory Partitioning

- Given a search space, everybody searches a partition of the search space
- Search states visited can be very different from states visited by sequential algorithm !

 Example: find minimum value of set of numbers
- May cause non determinism !
- Question: is this functional or domain decomposition ?

Example: Exploratory Partitioning

- Find minima in function F(x) by trying all 'x'
 - Should work for all functions without requiring proofs
 - What is the speedup ?
- Game tree search: checkers for example
 - I have N possible moves, try all N in parallel
 - Try all decendent possible moves in parallel etc
 - Stop when win or search_depth > threshold
 - What is the speedup ?
 - Lucky guesses ?

Speculative Partitioning (1)

- Looking into the future, try all paths that will be taken
- When finally reaching a point in the program where a decision on taken path needs to be taken, choose precomputed data

Speculative Partitioning (2)

- Example:
 - -A = foo()
 - Switch (A) {
 - Case 1: X = goo(); break;
 - Case 2: X = zoo(); break;
 - }
 - Print X;

Compute in foo, goo and zoo in parallel. When foo finishes, take the result of the appropriate Computed X (from goo or zoo)

Recursive partitioning

- Will be handled later
 - Sneak preview: handle all recursive invocations in parallel.

Input data partitioning (1)

- Different from exploratory partitioning because exploratory partitioning can cut off search space while data partitioning continues until search space is exhausted
- Each task handles part of input space as well as it can
- A.K.A. owner computes

Input data partitioning (2)

- Example 1: sort N numbers with M cpus
 - Each cpu handles N/M numbers
 - Each 2nd cpu merges with its neighbor
 - Each 4th cpu merges with its 2nd neighbor

– etc

Input Data Partitioning (3)

- Example 2: data mining
 - Data mining = finding interresting correlations in data sets
 - Supermarket: which items are sold together most?
 - P = set of transactions
 - Partition P in M sets, 1 set for each of M cpus
 - · Each cpu: compute frequency table for all permutations of items
 - · Afterwards, sum frequency tables from all cpus

Input Data Partitioning (5)

Cpu 0 makes frequency table: Cpu N makes frequency table:

Peer Apple Apple Banana: Meat Bread Apple Sardine	3x 1x 2x 1x	Peer Apple Apple Banana: Meat Bread Apple Sardine	6x 2x 8x 2x
etc		etc	

Output data partitioning (1)

- Each task computes part of the output value
- A.K.A. "owner computes"
- Can only be done if tasks independent

Output data partitioning (2)

- Example: matrix multiplication A*B = C
 - Matrix NxN, 4 cpus then each cpu computes submatrix (N/2)x(N/2)
 - Subdivide C in 4 parts
 - (A11 A12) (B11 B12) (C11 C12)
 - (A21 A22) * (B21 B22) = (C21 C22)
 - More parallelism required ?
 - Split C11, C12, C21, C22 in 4 parts, etc

Output Data Partitioning (3)

- Example: data mining a supermarket
 - Which items are sold together most ?
 - P = set of all permutations of items
 - Partition P over N cpus
 - Duplicate transaction database
 - · Perform frequency analysis over all transactions
 - · Merge frequency analysis data

Output Data Partitioning (4) Items = { Apple, Banana, Meat, Bread, Sardine} Permutions = { Apple Banana, Cpu 0 computes how many times Cpu 0 Apple Meat, Apple-Banana pairs sold, Apple-Meat Apple Bread, Pairs sold, etc Apple Sardine, Banana Meat, Banana Bread. Banana Sardine Cpu 1 Meat Bread Meat Sardine

Intermediate partitioning

- Given a multistage problem, partition one of the intermediate stages
- If problem has only one stage, try and rewrite algorithm to a multistage algorithm
- · Example: find most co-sold items
 - (1) find most sold items, (2) build freq. Table,(3) test co-sold property
 - Parallelize on step 2

Hybrid partitioning

- In a multistage algorithm, use different partitioning schemes for the different stages
 - Example: in the data-mining example, after finding 'hot' co-sold items using *output partitioning*, see if supplier has better/cheaper alternatives using *input partitioning*
 - 2 stage problem: data mining, finding better products

 Contact all suppliers in parallel when finding a hot co-sold pair during data-mining process

Task generation

- Task generation is the process of creating work descriptors
 - Work descriptors can take many forms
 - Type of thread, object, array element, ...
- Cpus accept work descriptors and perform the task
- Questions:
 - · Generate all tasks at startup ?
 - While the program is running ?
 - Can sibling tasks influence each other ?
 - · Do prior tasks influence the meaning of future tasks ?

Static task generation

- · Generate all tasks at start of algorithm
- Example:
 - search for the minimum of a set of M numbers using N cpus
 - · Generate N tasks, each searching M/N numbers
 - Afterwards, one processor searches the minimum of the N found minima
- Advantage: possible to statically map tasks to processors

- Allows compile time knowledge to be applied

Dynamic task generation (1)

- While a task is running, it may generate additional tasks
- Advantage:
 - Adaptability to different network layouts/number of cpus
- Disadvantage:
 - Don't know apriori how large a task may be

Dynamic task creation (2)

Example: game tree search

- Find path from X to Y in labyrinth
 - Create all paths from X to neighbours

 (creates new tasks to expand neighbours)
 - From neighbours expand paths to all neigbour's neighbours
 - Etc until we find an expansion of a node whose neighbour is Y
 - · Parallel: cpus put/get 'expand' tasks in/from queue
- Each expansion dynamically creates new "expand" tasks

Uniform/non uniform task sizes

- Are all tasks of the same size ?
 - Then it's a uniform task creation algorithm
 - When giving each cpu a partition of input data set its often uniform if there is no dynamic task creation
 - Do we know a-priori how long a task will take ?

Read-only/read-write task interactions

- Do tasks only read data from other tasks or do they also modify data owned by other tasks
- Example: find minimum value of a function
 - Partition input data amongst cpus
 - When finding a minimum broadcast it
 - When a partial evaluation is larger than current minimum quickly give up

Synchronous task interactions

- Task I and task J cooperate when sending messages
 - Task I performs a send
 - Task J performs a receive
- Message passing libraries often work this way

Asynchonous task interactions

- Task I informs task J of an event by directly writing into J's memory
 - Task J performs no explicit receive !
 - Threaded programs often work this way
 One thread writes global minimum value while others concurrently read it

Static task interactions

- Always know that at some location cpu X will communicate with cpu Y
 - This is especially true in SPMD programs
- Example:=
 - For I=0;I<10;I++)
 - A[I*2] = A[I*2+1] + 14
 - Assume a[x] with x = even on cpu 0, with x uneven on cpu 1

Dynamic task interactions

- Do not a-priori know if communication will take place or to which cpu
 - Happens with MPMD programs
 - Example:
 - If (x > y) send_message(z) to cpu 5

Irregular task interactions

- We do not a-priori know with which processor we will communicate
 - Happens with MPMD machines
- Example:
 - Send message(Z) to cpu N, where N is the result of some computation
- Also known as "irregular problems)

Task mapping (1)

- Map task X to cpu Y
 - Lots of tunable parameters in this question to gain best performance
 - Generally: Tradeoff between load balancing and number of messages sent over network

Task mapping (2)

- · Possible to statically load balance if
 - Static task creation
 - Uniform task sizes
 - (we know how long each task will take and how many tasks there are)
 - Allows all kinds of compiler optimization
 - Explicit send/receive
 - · Loop/data transformations, etc

Task mapping (3)

- Can do even better if
 - Know data partitioning
 - Static task interactions
 - know when task X will communicate with task Y
 - Regular task interactions
 - Synchronous task interactions
 - Know network/cpu speed

Task mapping (4)

- · Global scheduling
 - Use centralized knowledge to map tasks to processors
 - Example: M tasks with N cpus, M >> N and non-uniform task sizes
 - Cpu 0 tells cpus 1-N to run a task.
 - When cpu X is done, it asks cpu 0 for another
 - Typically, the centralized processor becomes a bottleneck

Task mapping (5)

- Local scheduling
 - Let each processor decide what to do on its own
 - Typically less globally optimal

Data mapping

• Later lecture

Pipelining (1)

- Problem is splitable in chunks
- Each sub-problem is dependent on the previous chunk
- · Performed in about all new processors
- Can be performed in software as well !
- speedup = length of pipeline / by communication speed for slowest module

Pipelining (3)

- Pipelining to hide latencies
 - Example
 - Load reg1 = mem
 - Nop
 - Nop
 - Reg1 = reg1 + 1
 - Store mem = reg1

Precise vs Imprecise parallel algorithms

- The parallel algorithm delivers a (slightly) different answer than the seq. algorithm
- Does it matter if the answer is off by 0.1%?
 - Perform unsynchronized writes...
 - Remove fifoness of message queues...
 - Generally remove synchronization...

Randomized Algorithms (1)

- · Partition data at random locations
- Replicate data & send work to random locations
- Note: random algoritms often provably optimal !
 - No administrative overheads !
- Note: random != random

Randomized Algorithms (2)

- Example: database with parallel processes accessing the database
 - Non randomized: use a directory (telephone book)
 - Data d = database.get_object("monkey");
 - · String "monkey" sent to directory machine
 - Directory machine returns machine-id which holds the data
 - · Requesting machine can now send request to correct machine

Randomized Algorithms (3)

- Example: database with parallel processes accessing the database
 - distribute data evenly over N cpus
 - When we need to access object X we need to know which object has it
 - Location(object X) = hash_value(X) % number_of_CPUs
 - No central directory needed to store object locations

Randomized Algorithms (4)

- Example:
 - Data d = database.get_object("monkey");Get_object computes hash of "monkey"
 - · Send message to that machine

Randomized Algorithms (5)

- Example 2: replicate input data on all machines
 - When using a dynamic master-slave model:
 - Master thinks that works needs to be done:
 Creates a new slave, sends it somewhere with a
 - description of the work it is supposed to do
 - Centralized:
 - Master keeps track of everything:
 - » Which CPU is busy / idle
 - » Requires messages to keep master up-to-date
 - Random:
 - Master sends slave to random CPU
 - » No overhead !

Randomized Algorithms (6)

- · Imperfect hashing: load imbalance
- Does not work when time per work unit differs greatly