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Parallel Algorithms

Lecture 2: Theory Overview

Ronald Veldema

Domain or Functional 
Decomposition ?

• Domain: partition data of the algorithm
– Subdivide input 

• Functional: partition algorithm, then deal 
with associated data
– Pull apart code (loops, recursion) to allow 

parallel execution
• Can mix both !

Exploratory Partitioning

• Given a search space, everybody searches a 
partition of the search space

• Search states visited can be very different from 
states visited by sequential algorithm !
– Example: find minimum value of set of numbers

• May cause non determinism !
• Question: is this functional or domain 

decomposition ?

Example: Exploratory 
Partitioning

• Find minima in function F(x) by trying all ‘x’
– Should work for all functions without requiring proofs
– What is the speedup ?

• Game tree search: checkers for example
– I have N possible moves, try all N in parallel
– Try all decendent possible moves in parallel etc
– Stop when win or search_depth > threshold
– What is the speedup ?

• Lucky guesses ?

Speculative Partitioning (1)

• Looking into the future, try all paths that 
will be taken

• When finally reaching a point in the 
program where a decision on taken path 
needs to be taken, choose precomputed data

Speculative Partitioning (2)
• Example:

– A = foo()
– Switch (A) {

• Case 1: X = goo(); break;
• Case 2: X = zoo(); break;
• }

– Print X;
Compute in foo, goo and zoo in parallel.
When foo finishes, take the result of the appropriate
Computed X (from goo or zoo)
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Recursive partitioning

• Will be handled later
– Sneak preview: handle all recursive invocations 

in parallel.

Input data partitioning (1)

• Different from exploratory partitioning 
because exploratory partitioning can cut off 
search space while data partitioning 
continues until search space is exhausted

• Each task handles part of input space as 
well as it can

• A.K.A. owner computes

Input data partitioning (2)

• Example 1: sort N numbers with M cpus
– Each cpu handles N/M numbers
– Each 2nd cpu merges with its neighbor
– Each 4th cpu merges with its 2nd neighbor
– etc

Input Data Partitioning (3)
• Example 2: data mining

– Data mining = finding interresting correlations 
in data sets

– Supermarket: which items are sold together 
most ?

• P = set of transactions
• Partition P in M sets, 1 set for each of M cpus
• Each cpu: compute frequency table for all 

permutations of items
• Afterwards, sum frequency tables from all cpus

Input Data Partitioning (4)
Transactions:
Peer  Apple Banana
Peer Apple Bread
Peer Apple Sardines
Meat Sardine Bread
Meat Bratwurst Bread
…
…
…
…
…
…
…

Cpu 0

Cpu 1

Input Data Partitioning (5)
Cpu N makes frequency table:

Peer Apple                        6x
Apple Banana:                  2x
Meat Bread                       8x 
Apple Sardine                   2x
…
…
…
etc

Cpu 0 makes frequency table:

Peer Apple                        3x
Apple Banana:                  1x
Meat Bread                       2x 
Apple Sardine                   1x
…
…
…
etc
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Output data partitioning (1)

• Each task computes part of the output value
• A.K.A. “owner computes”
• Can only be done if tasks independent 

Output data partitioning (2)

• Example: matrix multiplication A*B = C
– Matrix NxN, 4 cpus then each cpu computes 

submatrix (N/2)x(N/2)
– Subdivide C in 4 parts

• (A11 A12)      (B11 B12)        (C11 C12)
• (A21 A22)  *  (B21 B22)   =   (C21 C22)

– More parallelism required ?
• Split C11, C12, C21, C22 in 4 parts, etc

Output Data Partitioning (3)

• Example: data mining a supermarket
– Which items are sold together most ?

• P = set of all permutations of items
• Partition P over N cpus
• Duplicate transaction database
• Perform frequency analysis over all transactions
• Merge frequency analysis data 

Output Data Partitioning (4)
Items = { Apple, Banana, Meat, Bread, Sardine}
Permutions = {
Apple Banana,
Apple Meat,
Apple Bread,
Apple Sardine,
Banana Meat,
Banana Bread,
Banana Sardine
Meat Bread
Meat Sardine
…
…

Cpu 1

Cpu 0 Cpu 0 computes how many times
Apple-Banana pairs sold, Apple-Meat 
Pairs sold, etc

Intermediate partitioning

• Given a multistage problem, partition one of 
the intermediate stages

• If problem has only one stage, try and 
rewrite algorithm to a multistage algorithm

• Example: find most co-sold items
– (1) find most sold items, (2) build freq. Table, 

(3) test co-sold property
– Parallelize on step 2

Hybrid partitioning

• In a multistage algorithm, use different 
partitioning schemes for the different stages
– Example: in the data-mining example, after 

finding ‘hot’ co-sold items using output 
partitioning, see if supplier has better/cheaper 
alternatives using input partitioning

• 2 stage problem: data mining, finding better products
– Contact all suppliers in parallel when finding a hot co-sold 

pair during data-mining process
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Task generation
• Task generation is the process of creating work 

descriptors
– Work descriptors can take many forms

• Type of thread, object, array element, …

• Cpus accept work descriptors and perform the task
• Questions: 

• Generate all tasks at startup ? 
• While the program is running ? 
• Can sibling tasks influence each other ?
• Do prior tasks influence the meaning of future tasks ?

Static task generation

• Generate all tasks at start of algorithm
• Example: 

– search for the minimum of a set of M numbers using N 
cpus

• Generate N tasks, each searching M/N numbers
• Afterwards, one processor searches the minimum of the N 

found minima

• Advantage: possible to statically map tasks to 
processors
– Allows compile time knowledge to be applied

Dynamic task generation (1)

• While a task is running, it may generate 
additional tasks

• Advantage:
– Adaptability to different network 

layouts/number of cpus
• Disadvantage:

– Don’t know apriori how large a task may be

Dynamic task creation (2)

• Example: game tree search
– Find path from X to Y in labyrinth

• Create all paths from X to neighbours
– (creates new tasks to expand neighbours)

• From neighbours expand paths to all neigbour’s neighbours
• Etc until we find an expansion of a node whose neighbour is Y
• Parallel: cpus put/get ‘expand’ tasks in/from queue 

– Each expansion dynamically creates new “expand” 
tasks

Uniform/non uniform task sizes

• Are all tasks of the same size ?
– Then it’s a uniform task creation algorithm

• When giving each cpu a partition of input data set its 
often uniform if there is no dynamic task creation

– Do we know a-priori how long a task will take ?

Read-only/read-write task 
interactions

• Do tasks only read data from other tasks or 
do they also modify data owned by other 
tasks

• Example: find minimum value of a function
– Partition input data amongst cpus
– When finding a minimum broadcast it
– When a partial evaluation is larger than current 

minimum quickly give up
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Synchronous task interactions

• Task I and task J cooperate when sending 
messages
– Task I performs a send
– Task J performs a receive

• Message passing libraries often work this 
way

Asynchonous task interactions

• Task I informs task J of an event by directly 
writing into J’s memory
– Task J performs no explicit receive !
– Threaded programs often work this way

• One thread writes global minimum value while 
others concurrently read it 

Static task interactions

• Always know that at some location cpu X 
will communicate with cpu Y
– This is especially true in SPMD programs

• Example:=
– For I=0;I<10;I++)

• A[I*2] = A[I*2+1] + 14

– Assume a[x] with x = even on cpu 0, with x 
uneven on cpu 1

Dynamic task interactions

• Do not a-priori know if communication will 
take place or to which cpu
– Happens with MPMD programs
– Example:

• If (x > y) send_message(z) to cpu 5

Irregular task interactions

• We do not a-priori know with which 
processor we will communicate
– Happens with MPMD machines

• Example:
– Send message(Z) to cpu N, where N is the 

result of some computation
• Also known as “irregular problems)

Task mapping (1)

• Map task X to cpu Y
– Lots of tunable parameters in this question to 

gain best performance
– Generally: Tradeoff between load balancing 

and number of messages sent over network
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Task mapping (2)

• Possible to statically load balance if 
– Static task creation
– Uniform task sizes
– (we know how long each task will take and 

how many tasks there are)
– Allows all kinds of compiler optimization

• Explicit send/receive
• Loop/data transformations, etc

Task mapping (3)

• Can do even better if
– Know data partitioning
– Static task interactions 

– know when task X will communicate with task Y

– Regular task interactions
– Synchronous task interactions
– Know network/cpu speed

Task mapping (4)

• Global scheduling
– Use centralized knowledge to map tasks to 

processors
– Example: M tasks with N cpus, M >> N and 

non-uniform task sizes
• Cpu 0 tells cpus 1-N to run a task. 
• When cpu X is done, it asks cpu 0 for another

– Typically, the centralized processor becomes a 
bottleneck

Task mapping (5)

• Local scheduling
– Let each processor decide what to do on its own
– Typically less globally optimal

Data mapping

• Later lecture

Pipelining (1)

• Problem is splitable in chunks 
• Each sub-problem is dependent on the 

previous chunk
• Performed in about all new processors
• Can be performed in software as well !
• speedup = length of pipeline / by 

communication speed for slowest module
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Pipelining (2)

input module1 module2 module3     output

input module1 module2a     module3  output

module2b 

module2c

module2d

Pipelining (3)

• Pipelining to hide latencies
– Example

• Load reg1 = mem
• Nop
• Nop
• Reg1 = reg1 + 1
• Store mem = reg1

Pipelining (4)

• Pipeline aborts 
– When inserting an jump into a pipeline, the 

already loaded insns after the jump need to be 
aborted

[prefetch] [decode] [load-operands] [execute] [store_results]

Here we know where we jump to and 
Remove the insns that are in the stages before 
The “execute” stage

Pipelining (5)

• Data flow languages use extensive pipelining to 
create parallel programs

• Data flow languages use mostly “visual” 
programming

+

F(X) 534

Iterator: 1 - 100

Precise vs Imprecise parallel 
algorithms

• The parallel algorithm delivers a (slightly) 
different answer than the seq. algorithm

• Does it matter if the answer is off by 0.1% ?
– Perform unsynchronized writes…
– Remove fifoness of message queues…
– Generally remove synchronization…

Randomized Algorithms  (1)

• Partition data at random locations
• Replicate data & send work to random 

locations
• Note: random algoritms often provably 

optimal !
– No administrative overheads !

• Note: random != random
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Randomized Algorithms (2)

• Example: database with parallel processes 
accessing the database
– Non randomized: use a directory (telephone book)
– Data d = database.get_object(“monkey”);

• String “monkey” sent to directory machine
• Directory machine returns machine-id which holds the data
• Requesting machine can now send request to correct machine

Randomized Algorithms (3)

• Example: database with parallel processes 
accessing the database
– distribute data evenly over N cpus
– When we need to access object X we need to 

know which object has it 
– Location(object X) = hash_value(X) % number_of_CPUs
– No central directory needed to store object locations

Randomized Algorithms (4)

• Example:
– Data d = database.get_object(“monkey”);

• Get_object computes hash of “monkey”
• Send message to that machine

Randomized Algorithms (5)
• Example 2: replicate input data on all 

machines
– When using a dynamic master-slave model:

• Master thinks that works needs to be done:
– Creates a new slave, sends it somewhere with a 

description of the work it is supposed to do

• Centralized:
– Master keeps track of everything:

» Which CPU is busy / idle
» Requires messages to keep master up-to-date

• Random:
– Master sends slave to random CPU

» No overhead !

Randomized Algorithms (6)

• Imperfect hashing: load imbalance
• Does not work when time per work unit 

differs greatly 


