
1

Parallel Algorithms

Lecture 3: Parallel Languages

Ronald Veldema

Languages

• Many languages now have some form of
parallel construct
– Integrated multithreading support
– Integrated support for parallel arrays
– Integrated support for task/data mapping
– Parallel ‘for’ loops
– Parallel processes (with some commication

support)

Process Algebra (1)

• Process algebra is a meta language for
theorists to describe parallel systems

• Used to prove
– Determinism
– Deadlocks
– Race conditions
– etc

Process Algebra (2)

• State transition: A B
• Sequential: AB (run A then B)
• Composition (A) (A is a subprocess)
• Choice A + B (run A or B, not both)
• Parallel A || B (run A and B in parallel)
• Communication y(a,b)

– Communicate: b sends message to a, a does receive

s

Process Algebra (3)

• Question ?
– A || B == AB | BA ?
– A(B+C) == AB + AC ?

Process Algebra (4)

• Deadlock
– State without outgoing transition
– A B

• Livelock
– Set of states without outgoing transition

• A B
• B A

2

Spin (1)

• Prove that a number of parallel processes can’t get
into an illegal/unhandled state

• http://spinroot.com/spin/whatisspin.html

– Use to prove deadlock/livelock free-ness of parallel
programs

– Use to prove that the system is complete: in all states,
all messages that can arrive there are processed

– Use to prove that programmers assertions always hold

Spin (2)
• Example:

– Pathfinder mars mission failed because of
concurrency control problem

• Gist of problem:
– Producer/consumer problem

» High priority process acquires/releases mutex in loop
– Consumer: always runnable
– Producer: runs only if nothing runnable
– What happenes if high prio. process starts while low level priority

process holds lock ?
» Low priority process stops running while holding the lock

Spin (3)
mtype = { free, busy, idle, waiting, running };

show mtype h_state = idle;
show mtype l_state = idle;
show mtype mutex = free;

active proctype high()/* can run at any time */
{
end: do

:: h_state = waiting;
atomic { mutex == free -> mutex = busy };
h_state = running;
/* critical section - consume data */
atomic { h_state = idle; mutex = free }
od

}

active proctype low()
provided (h_state == idle) /* scheduling rule */

{
end: do

:: l_state = waiting;
atomic { mutex == free -> mutex = busy};
l_state = running;
/* critical section - produce data */
atomic { l_state = idle; mutex = free }
od

}

Spin reports bug: waiting on atomic entry while nothing else
is runnable

Bug Finding (1)
• 3 * 2 * 3 states

– Cpu states: (idle,waiting,running) cpus
– Mutex is free or busy

• Spin tries all states:
H_state, L_state, mutex
Running, Running, free
Running, Running, busy
Running, waiting, free
Running, waiting, busy
Running, idle, free
Running, idle, busy
….
….

Illegal (2 running at same time)

Possible !

Bug Finding (2)
• For each step in process 1, exhaustively try

all possible interleavings of process 2
Process1

A1

A2

A3

A4

Process2

B1

B2

B3

B4

OR Process2

B1; B2

B3; B4

OR Process2 etc…

B1; B2; B3; B4

Parallel State Machines (1)

• Normal state machine
– Number of states with a special ‘start state’
– Outgoing transitions based on some triggering

condition

• Parallel state machine
– Each task has his own state state machine
– Tasks can send messages to state machines

• Parallel state machines can be rewritten to normal
state machines !

3

Parallel State Machines (2)

0

2 1

I = 0; // state 0
while (true)
{

if (I == 0)
// state 1 -> state 2
I = 1;

else
// state 2 -> state 1
I = 0;

}

Parallel State Machines (3)

0

2 1

I = 0; // state 0
while (true)
{

if (I == 0)
// state 1 -> state 2
I = 1;
send_msg(…);

else
// state 2 -> state 1
I = 0;

}

Received

NOT Received

Parallel State Machines (4)

• Map parallel State machine to normal state
machine:
– 2 machines SA and SB with states SA1 – SA4, SB1 ---

SB 3
– Create new states (SAx, SBy) with x=1…4, y=1…3.
– If SAx can move to SAp then draw edge from (SAx,*)

to (SAp,*) in new state machine
– If SBx can move to SBp then draw edge from (*, SBx)

to (*,SBp) in new state machine

Parallel State Machines (5)

n a

b

x

y

m

z

nm nx

am

Parallel State Machines (6)

n a

b

x

y

m

z

nm nx

am

ax

bx

ay

by

bz

az

bm

ny nz

Linda (1)

• Global tuple space that each cpu has access to:
– (“jim”, 34, 3), (“michael”, 44, 5)

• Out(“jim”, 34, 3)
– Puts this tuple in the tuple space

• In(jim, 34, ?salary)
– Gets tuple matching (jim, 34) and binds salary to 3.
– Tuple is removed from tuple space

• Read = same as ‘in’ except that tuple not removed

4

Linda (2)

• Note:
– Network independence
– Location independence
– Automatic synchronization

• When multiple CPUs try an ‘in’ only one will succeed

– Automatic partitioning possible based on for example:
• Hashing fields of tuple to owning cpu

– Advanced compiler work…
– Dynamic load balancing of tuples over cpus

• Search: not whole data base but only partition

Parallel Prolog (1)
Color(sky, blue). % database
Color(sea, blue).
Color(grass, green).

State(sky, gas).
State(sea, liquid).
State(grass, solid).

Thing(thing, color, state) :- % rules
Color(thing, color),
State(thing, state).

?- thing(X,blue,liquid) % query

Parallel Prolog (2)

1) Maintain a stack of predicates still to be
matched

2) Push to-be-proven goals on the stack
3) Pop a goal, try and match with known

truths
- If valid, unify and push goal as known truth

4) Continue until stack is empty

Parallel Prolog (3)

• Example:
– Push “thing(X, blue, liquid)”

• Head unification: Color=blue, State=liquid
• Push “Color(X, blue)” and “State(X, liquid)”

– For each X where color = blue, test State(X, liquid)
» Three alternatives for “color/2” (sea and sky)

– Bind X to sky, is “state(sky, liquid)” a fact ?
» Backtrack and try to bind X with “sea”

– State(sea, liquid) is a fact and thing(sea, blue, liquid) thus
now also a fact

Parallel Prolog (4)

• Sources of parallelism:
– Match(X,Y,Z) :- testme1(X,G), testme2(Y,Z)

• And parallelism
– Prove ‘testme1’ and ‘testme2’ in parallel

• Or parallelism
– Prove multiple alternatives in parallel:

» Example: testme1(X,blue) and testme1(X,red)

Set/Array/Script Mini-Languages

• Set a = sort(set b – set c)
– Sort common set between ‘b’ and ‘c’ and place

in ‘a’
• SPMD programming styles
• Explicit parallelism

5

Fortran (HPF)
• SPMD programming
• Explicit parallelism

– A = B * C ;; A, B, C are arrays

• Implicit parallelism
– do I = 1, N

• A(I) = B(I) * C(I)

– Enddo

– Note: compiler must do all the work !

Fortran (HPF) (2)

• Implicit parallelism
– DO I = 1, N

• A(I) = A(I) * A(I-1)

– Enddo

– Note: compiler must do all the work !

Fortran (HPF) (3)

• Implicit parallelism
– !HPF$ INDEPENDENT
– DO I = 1, N

• A(I) = A(I) * A(I-1)

– Enddo

– Note: programmer must do all the work !

Fortran (HPF) (4)

• !HPF$ PROCESSORS pr(16)
• REAL X (1024)
• !HPF$ DISTRIBUTE X(block) INTO pr

• Each processor gets 1024/16 elements of X
in roundrobin fashion

Fortran (HPF) (5)

• !HPF$ PROCESSORS pr(16)
• !HPF$ DISTRIBUTE X(CYCLIC) ONTO pr
• Real X(1024)

• Each processor gets every Nth element

Fortran (HPF) (6)

• !HPF$ PROCESSORS pr(16)
• !HPF$ DISTRIBUTE X(block,cyclic)
• REAL X(1024,1024)

• Each processor gets 1024/16 rows and of each row
every Nth element

6

Fortran (HPF) (7)

• !HPF$ ALIGN source_array WITH
target_array

• Real source_array(1024), target_array(1024)

• Says that each element of source_array
should be on the same cpu as target_array

Fortran (HPF) (8)
• !HPF\$ ALIGN source_array(I) WITH target_array(I * 2)

• !HPF\$ ALIGN source_array(I,J) WITH target_array(J,I)

• !HPF\$ ALIGN source_array(I,*) WITH target_array(J)

• !HPF\$ ALIGN source_array(I) WITH target_array(J,*)

Fortran (HPF) (9)

• Question
– What if distribution/align is perfect for one

function but not for another ?
• Remap to different distribution “on the fly” ?
• Ignore inefficiency ?

CC++ (1)

• “Concurrent C++”
• C++ with extra syntax
• par { x++; y++ }
• parfor (int I=0;I<10;I++) <statement>

CC++ (2)

• Global class A { }
• Float *global ptr
• Atomic void func() {}
• CCvoid &operator << (CCvoid &, const TYPE

&obj_in)
• CCvoid &operator >> (CCvoid &, TYPE

&obj_in)
• proc_t location(node_t(``machine_nameX''));
• G = new (location) Type();

Java

• Threads
– new Thread().start();
– synchronized (ptr) { statements }

• Translates to
– “lock(ptr) statements unlock(ptr)”

• Remote Method Invocation (RMI)
– Remote Procedure Call

7

JavaParty (1)

• Extension to the Java language
• Each class can have a “remote” modifier

– Instances thereof are remotely allocated
– Methods thereof are remotely invoked

JavaParty (2)

• Parameter to members of remote classes are
passed by copy

Remote class A {
void foo(Data d) {

PrintReference(d);
}

}

A a = new A();
Data d = new Data();
a.foo(d);
a.foo(d);

JavaParty (3)
remote class A {

void foo() {
}

}

class B {
A a;

void foo() {
DistributedRuntime.setTarget(cpu_num);
a = new A();

}
}

Synchronizing Resources (SR)
(1)

resource foo()
write("Start A")
process A

fa k := 1 to 2 -> write("In A");
af

end A

write("Start B")

process B
fa k := 1 to 2 -> write("In B");
af

end B
write("All done")

end foo

Start A
Start B
All done
In A
In B
In A
In B

Synchronizing Resources (SR)
(2)

resource Cotest()

procedure me(X: string[10])
write(X)

end

co me("A") // me("B") oc

write("At the end")
end

A
B
At the end

Or

B
A
At the end

Orca (1)

• Object like model with RPCs
– Modula like syntax
– Processes

• Can dynamically ‘fork’ more processes on
potentially different CPUs

– Objects
• Process can share objects with forked children

– Operations
• indivisible

8

Orca (2)

• Arc Consistency Problem
– N input values
– Binary constraints between some pairs of

values
– Repeatedly eliminate values from domains until

all constrains satisfied

Example: constraint type = ‘>‘, constraint vector = 1,0,1,1,0,1
Values = 10,30,103,30,40,20
Values = 30, 103, 40, 20
Values = 103,40,20

Orca (3): Arc Consistency Problem
OBJECT Domain;

TYPE ValueSet = SET OF Integer;
Domains: ARRAY[1..N] OF ValueSet;
compiler sees this is a write operation
OPERATION eliminate(v:integer; S: ValueSet);
BEGIN

Domains[v] := Domains[v] – S;
END;
compiler sees this is a read operation
OPERATION values(v:integer): ValueSet; BEGIN

RETURN Domains[v];
END;

END;

Orca (4): guards

• Guards are boolean operations
– If any guard in an operation delivers true then

operation may continue
– If no guard is true then operation blocks

– As soon as ANY guard becomes true is
operation atomically executed.

Orca (5)
OBJECT WorkAdmin;

TYPE VariableSet = SET OF Integer;
recheck: VariableSet;
ActiveProcesses: Integer;

OPERATION Ready(); BEGIN
ActiveProcesses -:= 1;

END;

OPERATION WaitForWork(S: VariableSet): boolean;
BEGIN

wait until: intersection of S and recheck is non empty
or intersection is empty and all processes are idle
GUARD SIZE(S * recheck) > 0 DO

ActiveProcesses +:=1;
RETURN true;

OD;
GUARD ActiveProcesses = 0 AND SIZE(S*recheck) = 0 DO

RETURN false;
OD

END;
END;

Orca (6)

• Orca replicates objects everywhere
– Send RPC to all machines

• Or put object on one machine and migrate
object to machine that uses it most

Parallel Lisp

• Lisp: functional language
– ‘(‘ expression ‘(‘ params ‘)’ ‘)’
– (<pre-expression> (EXEC <expression>)

<sibling-expressions>) <post-expression>
• Expression evaluates in parallel with sibling

expressions

– Important to lisp: functional transparancy
• Means that functions have no side-effects

9

Parallel Lisp: Matrix Multiply
(defun matmul (a b c n m k)
(declare (type (simple-array (unsigned-byte 32) (*)) a b c)

(fixnum n m k))
(let ((sum 0)

(i1 (- m))
(k2 0))

(declare (type (unsigned-byte 32) sum) (type fixnum i1 k2))
(dotimes (i n c)

(declare (fixnum i))
(setf i1 (+ i1 m)) ;; i1=i*m

(dotimes (j k)
(declare (fixnum j))
(setf sum 0)
(setf k2 (- k))
(dotimes (l m)

(declare (fixnum l))
(setf k2 (+ k2 k)) ;; k2= l*k
(setf sum (the (unsigned-byte 32) (+ (the (unsigned-byte 32) sum)

(the (unsigned-byte 32) (* (aref a (+ i1
l))

(aref b (+ k2
j))))))))

(setf (aref c (+ i1 j)) sum)))))

