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Parallel Algorithms

Lecture 3: Parallel Languages

Ronald Veldema

Languages

• Many languages now have some form of 
parallel construct
– Integrated multithreading support
– Integrated support for parallel arrays
– Integrated support for task/data mapping
– Parallel ‘for’ loops
– Parallel processes  (with some commication 

support)

Process Algebra (1)

• Process algebra is a meta language for 
theorists to describe parallel systems

• Used to prove 
– Determinism
– Deadlocks
– Race conditions
– etc

Process Algebra (2)

• State transition:     A             B
• Sequential:    AB            (run A then B)
• Composition   (A)          (A is a subprocess)
• Choice   A + B               (run A or B, not both)
• Parallel   A || B               (run A and B in parallel)
• Communication y(a,b)    

– Communicate: b sends message to a, a does receive

s

Process Algebra (3)

• Question ?
– A || B == AB | BA  ?
– A(B+C) == AB + AC ?

Process Algebra (4)

• Deadlock
– State without outgoing transition
– A     B

• Livelock
– Set of states without outgoing transition

• A     B
• B A



2

Spin (1)

• Prove that a number of parallel processes can’t get 
into an illegal/unhandled state

• http://spinroot.com/spin/whatisspin.html

– Use to prove deadlock/livelock free-ness of parallel 
programs

– Use to prove that the system is complete: in all states, 
all messages that can arrive there are processed

– Use to prove that programmers assertions always hold

Spin (2)
• Example:

– Pathfinder mars mission failed because of 
concurrency control problem

• Gist of problem:
– Producer/consumer problem

» High priority process acquires/releases mutex in loop
– Consumer: always runnable
– Producer: runs only if nothing runnable
– What happenes if high prio. process starts while low level priority 

process holds lock ?
» Low priority process stops running while holding the lock

Spin (3)
mtype = { free, busy, idle, waiting, running };

show mtype h_state = idle;
show mtype l_state = idle;
show mtype mutex = free;

active proctype high()/* can run at any time */
{
end:  do

:: h_state = waiting;
atomic { mutex == free -> mutex = busy };
h_state = running;
/* critical section - consume data */
atomic { h_state = idle; mutex = free }
od

}

active proctype low()
provided (h_state == idle) /* scheduling rule */

{
end:   do

:: l_state = waiting;
atomic { mutex == free -> mutex = busy};
l_state = running;
/* critical section - produce data */
atomic { l_state = idle; mutex = free }
od

}

Spin reports bug:  waiting on atomic entry while nothing else
is runnable

Bug Finding (1)
• 3 * 2 * 3 states

– Cpu states: (idle,waiting,running) cpus
– Mutex is free or busy

• Spin tries all states:
H_state,  L_state, mutex
Running, Running, free
Running, Running, busy
Running, waiting,   free
Running, waiting,   busy
Running, idle,    free
Running, idle,         busy
….
….

Illegal (2 running at same time)

Possible !

Bug Finding (2)
• For each step in process 1, exhaustively try 

all possible interleavings of process 2
Process1

A1

A2

A3

A4

Process2

B1

B2

B3

B4

OR Process2

B1; B2

B3; B4

OR Process2    etc…

B1; B2; B3; B4

Parallel State Machines (1)

• Normal state machine
– Number of states with a special ‘start state’
– Outgoing transitions based on some triggering 

condition

• Parallel state machine
– Each task has his own state state machine
– Tasks can send messages to state machines

• Parallel state machines can be rewritten to normal 
state machines !
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Parallel State Machines (2)

0

2 1

I = 0; // state 0
while (true)
{

if (I == 0)
// state 1 -> state 2
I = 1;

else
// state 2 -> state 1
I = 0;

}

Parallel State Machines (3)

0

2 1

I = 0; // state 0
while (true)
{

if (I == 0)
// state 1 -> state 2
I = 1;
send_msg(…);

else
// state 2 -> state 1
I = 0;

}

Received

NOT Received

Parallel State Machines (4)

• Map parallel State machine to normal state 
machine:
– 2 machines SA and SB with states SA1 – SA4, SB1 ---

SB 3
– Create new states (SAx, SBy) with x=1…4, y=1…3.
– If SAx can move to SAp then draw edge from (SAx,*) 

to (SAp,*) in new state machine
– If SBx can move to SBp then draw edge from (*, SBx) 

to (*,SBp) in new state machine

Parallel State Machines (5)

n a

b

x

y

m

z

nm nx

am

Parallel State Machines (6)

n a

b

x

y

m

z

nm nx

am

ax

bx

ay

by

bz

az

bm

ny nz

Linda (1)

• Global tuple space that each cpu has access to:
– (“jim”, 34, 3), (“michael”, 44, 5)

• Out(“jim”, 34, 3)
– Puts this tuple in the tuple space

• In(jim, 34, ?salary)
– Gets tuple matching (jim, 34) and binds salary to 3.
– Tuple is removed from tuple space

• Read = same as ‘in’ except that tuple not removed
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Linda (2)

• Note:
– Network independence
– Location independence
– Automatic synchronization

• When multiple CPUs try an ‘in’ only one will succeed

– Automatic partitioning possible based on for example:
• Hashing fields of tuple to owning cpu

– Advanced compiler work…
– Dynamic load balancing of tuples over cpus

• Search: not whole data base but only partition

Parallel Prolog (1)
Color(sky, blue).                    % database
Color(sea, blue).
Color(grass, green).

State(sky, gas). 
State(sea, liquid).
State(grass, solid).

Thing(thing, color, state) :- % rules
Color(thing, color),
State(thing, state).

?- thing(X,blue,liquid)            % query

Parallel Prolog (2)

1) Maintain a stack of predicates still to be 
matched

2) Push to-be-proven goals on the stack
3) Pop a goal, try and match with known 

truths
- If valid, unify and push goal as known truth

4) Continue until stack is empty

Parallel Prolog (3)

• Example:
– Push “thing(X, blue, liquid)”

• Head unification: Color=blue, State=liquid
• Push “Color(X, blue)” and “State(X, liquid)”

– For each X where color = blue, test State(X, liquid)
» Three alternatives for “color/2” (sea and sky)

– Bind X to sky, is “state(sky, liquid)” a fact ?
» Backtrack and try to bind X with “sea”

– State(sea, liquid) is a fact and thing(sea, blue, liquid) thus 
now also a fact

Parallel Prolog (4)

• Sources of parallelism:
– Match(X,Y,Z) :- testme1(X,G), testme2(Y,Z)

• And parallelism
– Prove ‘testme1’ and ‘testme2’ in parallel

• Or parallelism
– Prove multiple alternatives in parallel:

» Example: testme1(X,blue) and testme1(X,red)

Set/Array/Script Mini-Languages

• Set a = sort( set b – set c )
– Sort common set between ‘b’ and ‘c’ and place 

in ‘a’
• SPMD programming styles
• Explicit parallelism
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Fortran (HPF)
• SPMD programming
• Explicit parallelism

– A = B * C                  ;; A, B, C are arrays

• Implicit parallelism
– do I = 1, N

• A(I) = B(I) * C(I)

– Enddo

– Note: compiler must do all the work !

Fortran (HPF)  (2)

• Implicit parallelism
– DO I = 1, N

• A(I) = A(I) * A(I-1)

– Enddo

– Note: compiler must do all the work !

Fortran (HPF)  (3)

• Implicit parallelism
– !HPF$ INDEPENDENT
– DO I = 1, N

• A(I) = A(I) * A(I-1)

– Enddo

– Note: programmer must do all the work !

Fortran (HPF) (4)

• !HPF$ PROCESSORS pr(16)
• REAL X (1024)
• !HPF$ DISTRIBUTE X(block) INTO pr

• Each processor gets 1024/16 elements of X 
in roundrobin fashion

Fortran (HPF) (5)

• !HPF$ PROCESSORS pr(16)
• !HPF$ DISTRIBUTE X(CYCLIC) ONTO pr
• Real X(1024)

• Each processor gets every Nth element

Fortran (HPF) (6)

• !HPF$ PROCESSORS pr(16)
• !HPF$ DISTRIBUTE X(block,cyclic)
• REAL X(1024,1024)

• Each processor gets 1024/16 rows and of each row 
every Nth element
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Fortran (HPF) (7)

• !HPF$ ALIGN source_array WITH 
target_array

• Real source_array(1024), target_array(1024)

• Says that each element  of source_array 
should be on the same cpu as target_array

Fortran (HPF) (8)
• !HPF\$ ALIGN source_array(I) WITH target_array(I * 2)

• !HPF\$ ALIGN source_array(I,J) WITH target_array(J,I)

• !HPF\$ ALIGN source_array(I,*) WITH target_array(J)

• !HPF\$ ALIGN source_array(I) WITH target_array(J,*)

Fortran (HPF) (9)

• Question
– What if  distribution/align is perfect for one 

function but not for another ?
• Remap to different distribution “on the fly” ?
• Ignore inefficiency ?

CC++ (1)

• “Concurrent C++”
• C++ with extra syntax
• par { x++; y++ }
• parfor (int I=0;I<10;I++)  <statement>

CC++ (2)

• Global class A { }
• Float *global ptr
• Atomic void func() {}
• CCvoid &operator << (CCvoid &, const TYPE 

&obj_in)
• CCvoid &operator >> (CCvoid &, TYPE 

&obj_in)
• proc_t location(node_t(``machine_nameX''));
• G = new (location) Type();

Java

• Threads
– new Thread().start();
– synchronized (ptr) { statements }

• Translates to 
– “lock(ptr) statements unlock(ptr)” 

• Remote Method Invocation (RMI)
– Remote Procedure Call
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JavaParty (1)

• Extension to the Java language
• Each class can have a “remote” modifier

– Instances thereof are remotely allocated
– Methods thereof are remotely invoked

JavaParty (2)

• Parameter to members of remote classes are 
passed by copy

Remote class A {
void foo(Data d) { 

PrintReference(d);
}

}

A a = new A();
Data d = new Data();
a.foo(d);
a.foo(d);

JavaParty (3)
remote class A {

void foo() {
}

}

class B {
A a;

void foo() {
DistributedRuntime.setTarget(cpu_num);
a = new A();

}
}

Synchronizing Resources (SR) 
(1)

resource foo() 
write("Start A") 
process A 

fa k := 1 to 2 -> write("In A"); 
af 

end A 

write("Start B") 

process B 
fa k := 1 to 2 -> write("In B"); 
af 

end B 
write("All done") 

end foo 

Start A
Start B
All done
In A
In B
In A
In B

Synchronizing Resources (SR) 
(2)

resource Cotest() 

procedure me(X: string[10]) 
write(X) 

end 

co me("A") // me("B") oc

write("At the end") 
end 

A 
B
At the end

Or 

B
A
At the end

Orca (1)

• Object like model with RPCs
– Modula like syntax
– Processes

• Can dynamically ‘fork’ more processes on 
potentially different CPUs

– Objects
• Process can share objects with forked children

– Operations
• indivisible
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Orca (2)

• Arc Consistency Problem
– N input values
– Binary constraints between some pairs of 

values
– Repeatedly eliminate values from domains until 

all constrains satisfied

Example: constraint type = ‘>‘, constraint vector = 1,0,1,1,0,1
Values = 10,30,103,30,40,20
Values = 30, 103, 40, 20
Values = 103,40,20

Orca (3): Arc Consistency Problem
OBJECT Domain;

TYPE ValueSet = SET OF Integer;
Domains: ARRAY[1..N] OF ValueSet;
# compiler sees this is a write operation
OPERATION eliminate(v:integer; S: ValueSet);
BEGIN

Domains[v] := Domains[v] – S;
END;
# compiler sees this is a read operation
OPERATION values(v:integer): ValueSet; BEGIN

RETURN Domains[v];
END;

END;

Orca (4): guards

• Guards are boolean operations
– If any guard in an operation delivers true then 

operation may continue
– If no guard is true then operation blocks

– As soon as ANY guard becomes true is 
operation atomically executed.

Orca (5)
OBJECT WorkAdmin;

TYPE VariableSet = SET OF Integer;
recheck: VariableSet;
ActiveProcesses: Integer;

OPERATION Ready(); BEGIN 
ActiveProcesses -:= 1;

END;

OPERATION WaitForWork(S: VariableSet): boolean; 
BEGIN

# wait until: intersection of S and recheck is non empty
# or intersection is empty and all processes are idle
GUARD SIZE(S * recheck) > 0 DO

ActiveProcesses +:=1;
RETURN true; 

OD;
GUARD ActiveProcesses = 0 AND SIZE(S*recheck) = 0 DO

RETURN false;
OD

END;
END;

Orca (6)

• Orca replicates objects everywhere
– Send RPC to all machines 

• Or put object on one machine and migrate 
object to machine that uses it most

Parallel Lisp

• Lisp: functional language
– ‘(‘ expression ‘(‘ params ‘)’ ‘)’
– ( <pre-expression> ( EXEC <expression>) 

<sibling-expressions>) <post-expression>
• Expression evaluates in parallel with sibling 

expressions

– Important to lisp: functional transparancy
• Means that functions have no side-effects
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Parallel Lisp: Matrix Multiply
(defun matmul (a b c n m k) 
(declare (type (simple-array (unsigned-byte 32) (*)) a b c) 

(fixnum n m k)) 
(let ((sum 0) 

(i1 (- m)) 
(k2 0)) 

(declare (type (unsigned-byte 32) sum) (type fixnum i1 k2))
(dotimes (i n c) 

(declare (fixnum i)) 
(setf   i1 (+ i1 m)) ;; i1=i*m 

(dotimes (j k) 
(declare (fixnum j)) 
(setf sum 0) 
(setf k2 (- k))
(dotimes (l m) 

(declare (fixnum l)) 
(setf k2 (+ k2 k)) ;; k2= l*k 
(setf sum (the (unsigned-byte 32) (+ (the (unsigned-byte 32) sum) 

(the (unsigned-byte 32) (* (aref a (+ i1 
l)) 

(aref b (+ k2 
j)))))))) 

(setf (aref c (+ i1 j)) sum)))))


