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Parallel Algorithms

Lecture 4: Consistency & 
Protocols

Ronald Veldema

Generic Parallel Machines

• SPMD model
– PRAM machine
– A write by one cpu is immediately seen by all 

others
• MDMD model

– SMP machines
– A write _can_ be seen much later

PRAM model (1)
• 1 program (SPMD programming model)
• N times local memory & cpu
• 1 memory access unit
• 1 global memory

PRAM model (2)

Cpu 0 Cpu 1 Cpu Nprogram

Global memory

……

PRAM model (3)
• Normally, cpu 0 runs program

– Makes control flow decisions (i.e. call foo)
• ‘par [range] <statement>

– Each cpu runs <statement>
– If semantic:

• If <condition> then <statement> else nops
– Enough nops are run to cover run time of <statement>

max = -infinite
par i=0..N

if x[i] > max then
max = x[i]

Is this correct ?

NO: each cpu overwrites
other found cpu’s max !

PRAM model (3)
• In par block

– Each cpu reads the insn’s data in parallel
• concurent reads allowed ?

– each cpu does writes to memory in parallel
• concurrent writes allowed ?

– priority write (value in memory is of most valued cpu)
– common write (each cpu writes same value to location X)
– arbitrary write (value in memory is arbitrary)
– combining write (value is 'combine' (min, max, add) of values

– each cpu immediately 'sees' other cpus' writes.

• This model is often used to proof parallel alg. 
qualities 
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PRAM model (4)

PRAM

EREW CREW CRCW

Common Arbitrary Priority Combine

PRAM model (4)
• Good for proving algorithm properties but 

not implementable
– Assumes each processor has constant time 

access to all memory
– Concurrent reads/writes to a memory cell
– Single clock signal for all processors

PRAM model (5)

• Proof example:
– Prio-CRCW can be simulated on EREW with a 

log(#processors) penalty in performance
• (U vishkin: simultanious access in models that 

forbid it Journal of algorithms vol. 4) 

– Rj = 54
• Write 54 at address j in memory

PRAM model (6)
// assume: num cpus = N
//               ‘temp’, ’a’ are arrays of length N
//               ‘temp’ of type (address,int)
//               ‘a’ of type boolean
function set_memory(address j, int value)
par p = 0 .. N

temp[p] = (j, value)
sort_ascending(temp)
par p = 1 .. N

if temp[p].address == temp[p-1].address then a[p] = 0
if temp[p].address   > temp[p-1].address then a[p] = 1
if p = 1 then a[p] = 1

par p = 0 .. N
if a[p] == 1 then 

memory[temp[p].address] =  temp[p].value

1

1

1

log

PRAM model

• Every PRAM can be simulated by every 
other

• P-CRCW by EREW
– O(log(p))

• P-CRCW by C-CRCW
– O(log(p) / (log(p)log(p)))

• P-CRCW by A-CRCW
– O(log(p)log(p))

PRAM model
par I = 0 .. N

m[I] = 1
par I = 0 .. N

par J = 0 .. N
if x[I] < x[J] then 

m[I] = 0
par I = 0 .. N

if m[I] == 1 then
max := x[I]

Question: what is the time
Complexity ?

O(1)

Question: how many 
Processors did I use ?

N2
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Generic SMP machine

Cpu 1 Cpu N

Cache 1 Cache N

Global memory

……

program

Cpu 0

Cache 0

program program

Protocol Bus

What is a consistency model ?

• Consistency model = when is it guaranteed 
that others (cpus/threads) see my writes

Thread1() { 
lock();        // flush cache here ?
A = 4;        // or write A to directly to memory ? 
unlock();    // or flush cache here ?

} 

Thread2() {
Print A;

}

Why should I care ?

• When writing a parallel algorithm, you need to 
know what you can depend on

• High performance ?
– Exploit memory model characteristics !

• Very subtle bugs…
• Multiple coherence ‘views’ in a single computer:

– View presented by architecture to compiler
– View presented by compiler to middleware
– View presented by middleware to programmer

Why should I care ?

• Sparc pre-version 9: Total Store Order
– Load can be performed before outstanding stores 

complete
– Sparc version 9 and above: Relaxed Memory Order
– Loads and stores can be completely reordered as long 

as self consistency is ensured
• write issued is immediately visible by writee, not by other 

reading cpus

Why should I care ?

p.x = 1
Print p.x    -> “0”!

p.x = 1;
Nop
Nop
Print p.x   -> “1” 

Why should I care ?

Cpu 0              Cpu 1

x.f = 1
x.g = 2

tmp1 = x.f
tmp2 = x.g
tmp3 = x.f
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What is a consistency protocol ?

• protocol implements a given consistency 
model

• Examples:
– Only a single writer at a time to a variable

• For example by letting other writers wait

– Multiple concurent writers allowed
• For example by merging modified data from all 

writers

Sequential consistency (1)

• From lamport
• Serializability of operations

– a series of operations H is equal to _some_ 
series of serial operations.

Sequential consistency (2)
cpu 0              cpu 1
A = B             C = D
D = H             G = A

in serial:
A = B
C = D
D = H
G = A

or in serial:
C = D
G = A
A = B
D = H

etc

Bad:
G = A
C = D
A = B
D = H

Sequential consistency (3)

• All operations of each processor happen in 
order of the program that specified them.

• Every write operation becomes 
instantaneously visible throughout the 
system.

Sequential consistency (4)

• pro: very much what the programmer wants to see.
• con: slow as no operations can be (observably) 

reordered
• con: writes must be 'flushed' immediately.
• con: modern (SMP) machines have own caches,  

perform write reordering etc. 
– An programming language implementor would have to 

perform a lot of work...

Release consistency (1)

• paper: Memory Consistency and Event Ordering 
in Scalable Shared-Memory Multiprocessors 
(1990)

• conflicting accesses:
– two processors read/write the same variable X with at 

least one of them writting X.

• synchonization accesses:
– flags set to inform another processor of an event. 

(ackquire and release for example).
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Release consistency (2)

• compiler/programmer sets flags to tell if an access 
is special or ordinary. 
– Special = synchonization or competing.

• before an ordinary access, all previous ackuires
must have been performed

• before a release, all ordinary reads+writes must 
have been performed

• special accesses are sequentially consistent in 
respect to one another.

Release consistency (3)
example:

// ‘flag’ = special (synchronized, 
conflicting)

// ‘X,Y’ = ordinary (non-conflicting)

if (flag == true) { // release
X++;
Y++;

}

Note: flag can’t be cached
Note: read of flag acts as ‘release’
Note: X,Y access can’t be moved over flag access
Note: release of ‘flag’ acts as ‘flush thread/cpu cache’
Note: X,Y accesses can be reordered, flag accesses cannot

Eager release consistency

• writes immediately trigger protocol actions: 
invalidate caches

• release encountered while still have 
outstanding writes.

Lazy release consistency

• At release send write notices to processors 
that hold a copy of the data.

• Those processors can then invalidate, etc.

Processor consistency

• writes issued by a processor may not be 
observed in any other order.

• writes from two processors are not  
neccesarily in order.

A  = B = 0
A = 5                  print B   (“0”)
B = 4                  print A   (“5”)

Commit-Reconcile & Fences (CRF)

• Each thread/cpu has a cache
– ‘commit’ writes a value from the cache to memory
– ‘Reconcile’ removes stale values from cache
– ‘Fence’ prevents recordering

• Argument of fence is list of dependent variables
• Waits until every dependent value is stored in memory

• Other memory models are ‘mapped’ to CRF
• Compiler/architecture can optimize by removing 

C,R,F actions…
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Commit-Reconcile & Fences (CRF)

• Sequential consistency on top of CRF:
– ‘R=A.F’ = reconcile(A); load(R, A.F); fencew(A)
– ‘A.F=V’ = Store(A.F, V); commit(A); fencew(A)

• Release consistency on top of CRF

// fencerw(flag,X,Y); reconcile(flag); load(flag)
if (flag == true) { 

X++;  // reconcile(X); load(X); store(X+1)
Y++;  // reconcile(Y); load(Y); store(Y+1)

}

Scope consistency
• flush cached items in cache that we're 

pulled into the cache at when exiting a 
scope.

enter_scope();
A = 2;

enter_scope();
B = 3

exit_scope(); // flush B
exit_scope(); // flush A

Single Writer Protocols

• Single Writer Protocols
• update protocols
• directory based systems
• start/end-read/write protocols
• protocol state diagrams, protocol-provers

Single writer protocols (2)
write_lock(X);

X++;
write_unlock(X);

read_lock(X)
print X

read_unlock(X);

Single writer Protocols (3)

• Invalidation based protocols
– When writing to a data item, inform all current 

readers that the data item is
• Not to be used anymore
• Should not remain cached

Single Writer Protocols (4)
• Broadcast to all current readers

– How do you know who is a reader ?
• Broadcast to everyone
• Someone maintains a bitvector who is a reader
• Everyone maintains a bitvector of current readers

Cpu(0)        Cpu(1)       Cpu(2)
Read(X)     Read(X)

Invalidate(X)

Start_Write(X)
X = 343;

End_Write(X)

Remove(X)
Remove(X)



7

Single Writer Protocols (5)
• Broadcast to all current readers

– How do you know who is a reader ?
• Broadcast to everyone
• Someone maintains a bitvector who is a reader
• Everyone maintains a bitvector of current readers

StateMgr           cpu 0          cpu 1         cpu 2        
Read(X)

10
read(X)

11
invalidate(X)

start_write(X)
X = 43;

write(X)

Multiple writer protocols (1)

• each thread/cpu may concurently write to a 
memory location.

• the final result is some form of 'merge'.

Multiple writer protocols (2)
read_into_cache(X)
read_into_cache(Y)
read_into_cache(Z)

X++;
Y++;
Z++;

flush_cache();

Java Memory Model (1)

• Each thread has own cpu
• Each thread has own working memory
• Working memory is initially empty
• Working memory is flushed at each 

lock/unlock
– Lock/unlock = entry/exit synchronized block

Java Memory Model (2)

synchronized(LOCK) {
X++;
Y++;
Z++;

}

read_into_working_memory(X)
read_into_working_memory(Y)
read_into_working_memory(Z)

read_into_cache(X)
X++;
write_to_cache(X)

read_into_cache(Y)
Y++;
write_to_cache(Y)

read_into_cache(Z)
Z++;
write_to_cache(Z)

store_cache_in_memory(X)
store_cache_in_memory(Y)
store_cache_in_memory(Z)

flush_cache();

Java Memory Model (3)
• Double Locking Protocol failure

// Try 1

class A {
Data d = null;

void foo() {
if (d == null)

d = new Data()
}

}

// what happens under the JMM if two threads simultaniously enter ‘foo’ ?
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Java Memory Model (4)
• Double Locking Protocol failure

// Try 2

class A {
Data d = null;

synchronized void foo() {
if (d == null)

d = new Data()
}

}

// Correct, but the cost if the synchronized is not trivial and not needed if d != null…

Java Memory Model (5)
• Double Locking Protocol failure

// Try 3

class A {
Data d = null;

void foo() {
if (d == null) {

synchronized (this) {
d = new Data();

}
}

}
}

// NOT Correct,  two threads concurrectly test d == null and think its true…
// (result = two Data allocations ISO one)

Java Memory Model (6)
• Double Locking Protocol failure
// Try 4

class A {
Data d = null;
void foo() {

if (d == null) {
synchronized (this) {

if (d == null)
d = new Data();

}
}

}
}
// NOT Correct,  as assignments in the Data constructor may be moved to after the ‘d=new’
// assignment. The other thread would assume the object to be initialized (as d != null)
// while in reality the constructor is still running…
//   (in short: an optimizing compiler/processor makes this example incorrect)

Java Memory Model (7)
• Be careful when programming threads !

– You (or compiler) optimizes code slightly...

P = Q; P.X = 0

Thread 0   Thread 1
M = P.X P.X = 3
N  = Q.X
Z  = P.X

Thread 0   Thread 1
M = P.X      P.X = 3
N  = Q.X
Z  = M

May return M=Z=0, N = 3 !

Java Memory Model (8)
• Possible swap

class Swapper {
int a = 1, b = 2;

void hither() {
a = b;

}

void yon() {
b = a; 

}
}

*note: hither and yon not
synchronized !

*note: a thread’s cache may
be flushed at any time

*note: what happens when 
hither & yon are 
concurrently called ?

Java Memory Model (8)
• Possible swap
Hither thread      main memory      yon thread

read b    read a

Load b                                          load a
Use b                                                 use a
Assign a                                        assign b
Store a                                           store b

write a   write b
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Java Memory Model (8)
• Possible swap

– Write a precedes read a, read b precedes write b
• Ha=2,hb=2, ma=2,mb=2,ya=2,yb=2

– Read a precedes write a, write b precedes read b
• Ha=1,hb=1,ma=1,mb=1,ya=1,yb=1

– Read a precedes write a, read b precedes write b
• Ha=2,hb=2,ma=1,mb=2,ya=1,yb=1

Java Memory Model (9)
• Possible swap with synchronized ???????

class Swapper {
int a = 1, b = 2;

synchronized void hither() {
a = b;

}

synchronized void yon() {
b = a; 

}
}

Java Memory Model (9)
• Possible swap with synchronized: NO !

class Swapper {
int a = 1, b = 2;

synchronized void hither() {
a = b;

}

synchronized void yon() {
b = a; 

}
}

No !
- hither runs first

a=b=2

- yon runs first
b=a=1

Java Memory Model (10)
• Out Of Order writes: what are the possible print 

results ?
Class Example {

int a = 1, b = 2;

// called from thread 1
synchronized void foo() {

a = 3;
b = 4;

} // flush a & b and then unlock this object

// called from thread 2: note: not synchronized !
void print() {

System.out.println(“a=“+a+”, b=“+b);
}

}

Java Memory Model (10)
• Out Of Order writes: what are the possible print 

results ?
Class Example {

int a = 1, b = 2;

// called from thread 1
synchronized void foo() {

a = 3;
b = 4;

} // flush a & b and then unlock this object

// called from thread 2: 
synchronized void print() {

System.out.println(“a=“+a+”, b=“+b);
}

}

Exploiting the Java Memory 
Model

• Java software DSM systems
• Allow variables to be pulled into registers 

until a synchronization point is reached



10

Invalidation Protocols
• Whenever a piece of data is updated, remove all 

invalid replicas held by other cpus by sending 
explicit invalidate messages
– Question: broadcast invalidate or maintain lists of 

replicas ?

W(X)
R(X) -> X replicated

W(X) -> invalidate 
X gone from cache

Modify (X)

Update Protocols
• Whenever a piece of data is updated, broadcast 

modications made
– Question: broadcast updates or maintain lists of replicas ?
– Broadcast every write or wait a little and save on 

communication overheads ?

W(X)
R(X) -> X replicated

Modify (X) 

broadcast (X)


