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Parallel Complexity Theory

Lecture 6

Reminder: Complexity (1)

• Number of ‘steps’ or ‘memory units’ 
required to compute some result
– In terms of input size
– Using a single processor

• O(1) says that regardless of input size, we 
only need constant time

• O(n) says 1 time step per input value
• O(n2) says n steps per input value

Comparatorial Networks (1)

• Networks of connected comparators

Reminder: Complexity (2)

• NP hard problems
– NP=“non-deterministic, polynomial time”
– Every NP hard problem is in the same ‘class’ 

• Prove that one NP hard problem is NP then all are NP.
• Examples:

– SAT (prove that (A v B) ^ (¬C v D) ^ etc = true for some 
A,B,C,D,etc

– In general: everything that says:
» Find the optimal X under conditions A,B,C,D,E…
» Example: TSP, register allocation, 

instruction/process/message/room/class/etc scheduling

Graph Accessibility Problem 
(GAP) (1)

• Graph G =(V,E)
– Vertices numbered 0 – n-1 
– Shared memory machine is given:

• 0 <= u,v < n 
• Adjacency matrix A

– In a G, two vertices are adjacent if they are joined by an edge
– ‘1’ in matrix thus says if two vertices are adjacent

» A[i,j] == true iff (i,j) ∈E

– Problem: find a path over the edges that matches some 
condition. We’ll use “length(path) < n”

GAP (2)

• Non deterministic:

x = start
while x != end

y = random(graph-size)
if (x,y) not in graph

REJECT NTM
x = y

ACCEPT NTM

Here NTM splices
into graph-size
new NTMs
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GAP (3)
bool deterministic_gap(graph g, node p, int len)
{

if (len == 0) return false;
for each neighbour q of p in g

if  not already traversed q
if deterministic_gap(g, q, len-1)

return true;
return false;

}

With n nodes in g: O(n!)

GAP (3)
bool deterministic_gap(graph g, node p, int len)
{

if (len == 0) return false;
parfor each neighbour q of p in g

if  not already traversed q
if deterministic_gap(g, q, len-1)

return true;
return false;

}

- how many cpus ?
- how much speedup ?

GAP (3)
• PID = 0…n3 // get cpu-nr (need n3 cpus !)
• I=PID/n2, j=(PID % n2)/n, k=PID % n 
• A[I,I] = true
• L=1
• while (L < n)

– if (A[i,k] && A[k,j]) 
• A[i,j] = true;

– I = L; J = L;
– L=L*2;

Graph Accessibility Problem GAP (4)

• Notes:
– Run with n3 processors delivers exponential speedup
– Simulanious(!) writes to A[i,j]
– Proof:

• After the t’th iteration
– L = 2t

– For all 0 <= x,y < n, A[x,y]==true iff there is a path of length of 
at most L from x to y (by induction on ‘t’)

– After log n iterations, A[u,v] is true iff there a path from u to v
– Therefore 

» Running time is O(log n)
» Word size needed is O(log n)
» Space bound is O(n3)

Combinatorial Networks (1)
• Comparator

– Small switching unit that swaps outputs if (in 0 < in 1)
• Networks of comparators

– Without feedback
– Values are atomic units
– Values travel in channels
– Finite number of levels

• Level = parallel comparators
• Level 0 are the input values

• If outputs are de/ascending
– Sorting network

• Important: depth and size (#comparators used)

In0      In 1

Out 0   Out 1

Combinatorial Networks (2)

*Question: size, depth ?
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Combinatorial Networks (3)

*Question: size, depth ?

Min-max, max-min theorem (1)

• Every mixed min-max, max-min sorting 
network can be rewritten to pure min-max 

• Proof
– Represent comparators as <a,b,c> tuples where 

a = level and b,c output channels
• Min-max=b<c, max-min=b>c

– Represent sorter as list C: 0…s, with s 
comparators.

Min-max, max-min theorem (2)
// read c?=c? and b? as b?
for i:=0 to s

if bi>ci then
for j:=i to s

Lj=<aj,bj,cj>
if bj==bii then bj=cii in Lj
else if bj==ci then bj=bi in Lj

if cj==bi then cj=ci in Lj
else if cj=ci then cj=bi in Lj

Min-max, max-min theorem (3)
• Claim 1: after the (i-1)th iteration we still sort

– bi < ci
• No change made

– bi > ci
• Swap outputs whenever bi or ci is used below level I
• Level i can only sort

• By induction we therefore still sort.
• Claim 2: we end up with only min-max: trivial 

induction on ‘i’
• Claim 3: we still sort in the same way: given 

ascending inputs we perform no actions and 
therefore sort in the same way.

The zero-one principle (1)

• An n-input network is a sorter if it sorts all 
sequences of 0-1.
– Impact: no need to test for ZZ, 0/1s suffice

• Proof:
– Define ha(x) = 1 if x >= a, else 0 
– Claim: if for inputs x1,x2…xn a channel carries 

value B,at level j, then for inputs ha(x1), 
ha(x2)… ha(xn) , it carries ha(B) 

The zero-one principle (2)
• Claim: if for inputs x1,x2…xn a channel carries 

value B,at level j, then for inputs ha(x1), ha(x2)… 
ha(xn) , it carries ha(B)
– J=0: ha(x1) = ha(B)
– J>0: consider channel i on level j with value B on input 

x
• Write V(i,j) = B for input x
• Write Va(i,j) for input ha(x)

• Suppose no comparator at level j, then by 
induction (as on the previous j we were OK)
– Va(i,j) = Va(B) 
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The zero-one principle (3)
• Suppose exists comparator between 

channels i and k at level j
– i<k (=min-max comparator)

• Va(i) = min(Va(i,j-1), Va(k,j-1)) 
• Va(i) = min(ha(Bi), ha(Bk))  // by induction
• Va(i) = min(Bi, Bk)            // by def. Of ha

• Va(i) = ha(B)

The zero-one principle (4)
• Proof by contradiction for network K:

– Assume outputs y1-n for inputs x1-n
– Assume not properly sorted: yi > yi+1
– Look at ha(y1-n) for inputs ha(x1-n)

• Chooze a=(yi+yi+1)/2
– ha(yi) = 1
– ha(yi+1) = 0

• Which can’t happen by definition of ha when 
applied to a sorting network therefore K not a 
sorting network. Therefore K must be a sorter.

Batcher’s merging network (1)

• Merge two sorted sequences <a1…an> and 
<b1…bn>
– N=1 then use 1 comparator
– N>1 

• first merge(ax,bx) where x odd and merge(ay,by) 
where y even

• Merge two sub results by adding a layer of 
comparators connecting channel 2i and 2i+1(with 
1<= i <n/2)

Batcher’s merging network (2)

o1  o2  o3  o4  o5  o6  o7 o8 o9 o10 o11 o12 o13 o14 o15  o16

a1  a2   a3   a4   a5   a6   a7  b1  b2  b3  b4  b5  b6  b7  b8 b9

Batcher’s merging network (3)

o1  o2  o3  o4  o5  o6  o7 o8 o9 o10 o11 o12 o13 o14 o15  o16

a1  a2   a3   a4   a5   a6   a7  b1  b2  b3  b4  b5  b6  b7  b8 b9

Batcher’s merging network (4)

o1  o2  o3  o4  o5  o6  o7 o8 o9 o10 o11 o12 o13 o14 o15  o16

a1  a2   a3   a4   a5   a6   a7  b1  b2  b3  b4  b5  b6  b7  b8 b9
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Batcher’s merging network (5)

o1  o2  o3  o4  o5  o6  o7 o8 o9 o10 o11 o12 o13 o14 o15  o16

a1  a2   a3   a4   a5   a6   a7  b1  b2  b3  b4  b5  b6  b7  b8 b9

Batcher’s merging network (6)

• Does this merge OK ?
• Proof:

– Assume: 
• n inputs
• recursive sub-merge was OK for odd/even

– got <c1…cp> and <d1…dp> with p=n/2
• Input-a <a1…an> : g*’0’, (p-g)*’1’
• Input-b <b1…bn> : h*’0’, (p-h)*’1’, 
• Output <f1…fn>

Batcher’s merging network (7)

a1  a2   a3   a4   a5   a6   a7  b1  b2  b3  b4  b5  b6  b7  b8 b9

o1  o2  o3  o4  o5  o6  o7 o8 o9 o10 o11 o12 o13 o14 o15  o16
e->

f->

c1 cp d1 dp

Batcher’s merging network (8)
• By induction, ‘e’ then consists of ((g/2)+(h/2)) * 

‘0’ and (p-(g/2)-(h/2))*’1’
– Same for ‘d’

• 3 cases:
– c has the same number of zeros as d

• e= 000000010111111111 g=h must be even(g+h) 
there must be a comparator to fix this 

• E=000000000000000000 ok
• E=111111111111111111 OK

– c has one more zero than d e=sorted, therefore f too
– c has two more zeros than d e=sorted, therefore f too

• Now merges all 0/1 seq. therefore zero-one 
principle applies

Batcher’s merging network (9)

• Given 2 sorted seq. of length p
– depth(1) = 1, size(1) = 1
– depth(p) = depth(p/2) + 1
– size(p) = 2*size(p/2) + p - 1

Batcher’s sorting network

• Steps:
– Sort 1st half, sort 2nd half of input numbers
– Recursively merge the results of those two

SDepth(n)=SDepth(n/2)+
merge_depth(n/2)

=SDepth(n/2) + log(n)
=log(n)*(log(n)+1)/2
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Parallel Prefix using 
Fischer&Ladners algorithm (1)

• Given an addition gate
• Given n inputs x1-n and n outputs y1-n

– Compute y(i)= sum x1..i for i=1…n
• Naiive solution:

(how many times is (x1+x2) computed ?)

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

+ + +

Parallel Prefix using 
Fischer&Ladners algorithm (2)

• On input x1…n 
– first compute xi+xi+1 for each odd(i)
– Next compute the prefix sum of these results 

• Use sub network with n/2 inputs
– i-th output of subnetwork becomes 2*i-th output
– ((2*I)+1)-th output becomes the I-th output of the subnet + 

((2*I)+1)-th input 

Parallel Prefix using 
Fischer&Ladners algorithm (3)

x1  x2  x3   x4 …..

y1  y2  y3  y4  … 

D(n)=D(n/2)+2
= 2*log(n)

S(n) = S(n/2)+n-1
= 2n-2-log(n)

Networks using Feedback (1)
• Feedback is memory

– Store previously computed values
• Less recompute == less combinators ?
• Less recompute == faster ?

– Feedback is stored in ‘buffer nodes
• Buffer is initialized with some value (memory empty)
• Releases same value each clocktick after ‘set’

0

5

5

5

50

Networks using Feedback (2)
• Parallel perfix sum:

– Compute y(i)= sum x1..i for i=1…n
• Try and create a circuit that does:

– y(i) = buffered(y(i)) + 0
– buffered(y(i)) = y(i-1) + x[i]

+ + +0 0 0

X[0]
X[3]

X[1]
X[4]

X[2]
X[5]

X[2]+0
X[5]+x[2]

X[1]+0
X[4]+X[2]

X[0]+0
X[3]+x[2]

Networks using Feedback (3)
• Parallel prefix sum:

+ + +0 0 0

X[0]
X[3]

X[1]
X[4]

X[2]
X[5]

X[2]+x[1]+x[0]+0
X[5]+

X[1]+x[0]+0
X[4]+

X[0]+0
X[3]+

+

+



7

Networks using Feedback (4)
• Parallel perfix sum:

+ + +0 0 0

X[0]
X[3]

X[1]
X[4]

X[2]
X[5]

X[2]+x[1]+x[0]+0
X[5]+

X[1]+x[0]+0
X[4]+

X[0]+0
X[3]+

+

+

Permutator (1)
• Need to generate all permutations of N values

– 1, 2, 3, 4
– 4, 3, 2, 1
– 3, 2, 1, 4
– Etc

• N numbers = N! permutations
• Use a ‘boolean switch’ component

0 1

Permutator (2)
Is this a full permutator ?

Permutator (3)

Permutator (4)

X1:P[1..n/2] X2:P[n/2 .. N]

Permutator (5)

• General:
– Permutate all even inputs
– Permutate all odd inputs
– Permute one even with one odd output

• Does this create all permutations ?
– Proof, given random wanted permutation:

• N=1, trivially ok
• N>1, route one output to one input via X1, take a neighbour-

input and route via X2, continue until done
– If routing conflict, start over with any other output
– Though N=1 case, there is atleast one mapping.
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Permutator (6)

• How many switches will I need to permute 
5 values ?

See U in 2005 !

• No lecture on 20th or exercises on the 24th
• 10 january next lecture


