Parallel Complexity Theory

Lecture 6

Reminder: Complexity (1)

- Number of 'steps' or 'memory units' required to compute some result
 - In terms of input size
 - Using a single processor
- O(1) says that regardless of input size, we only need constant time
- O(n) says 1 time step per input value
- O(n²) says n steps per input value

Comparatorial Networks (1)

· Networks of connected comparators

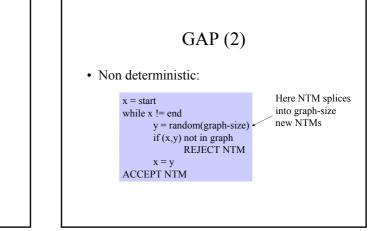
Reminder: Complexity (2)

· NP hard problems

- NP="non-deterministic, polynomial time"
- Every NP hard problem is in the same 'class'
 - Prove that one NP hard problem is NP then all are NP.
 - Examples:
 - SAT (prove that (A v B) ^ (¬C v D) ^ etc = true for some A,B,C,D,etc
 - In general: everything that says:
 - » Find the optimal X under conditions A,B,C,D,E...
 - » Example: TSP, register allocation, instruction/process/message/room/class/etc scheduling

Graph Accessibility Problem (GAP) (1)

- Graph G = (V,E)
 - Vertices numbered 0 n-1
 - Shared memory machine is given:
 - 0 <= *u*,*v* < n
 - Adjacency matrix A
 - In a G, two vertices are adjacent if they are joined by an edge
 - '1' in matrix thus says if two vertices are adjacent
 - » $A[i,j] == true iff(i,j) \in E$
 - Problem: find a path over the edges that matches some condition. We'll use "length(path) < n"



GAP (3)

bool c {	deterministic_gap(graph g, node p, int len)
(if (len == 0) return false;
	for each neighbour q of p in g
	if not already traversed q
	if deterministic_gap(g, q, len-1)
	return true;
	return false;
}	

With n nodes in g: O(n!)

GAP(3)

bool deterministic_gap(graph g, node p, int len)
{
 if (len == 0) return false;
 parfor each neighbour q of p in g
 if not already traversed q
 if deterministic_gap(g, q, len-1)
 return true;
 return false;
}
- how many cpus ?

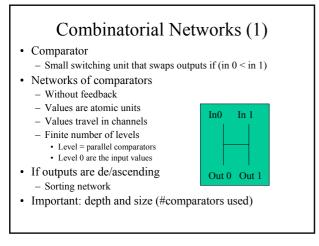
 $\begin{array}{l} Graph \ Accessibility \ Problem \\ GAP \ (3) \end{array}$ $\begin{array}{l} \bullet \ PID = 0 \dots n^3 // \ get \ cpu-nr \ (need \ n^3 \ cpus \ !) \\ \bullet \ I = \left\lfloor PID/n^2 \right\rfloor, \ j = \left\lfloor (PID \ \% \ n^2)/n \right\rfloor, \ k = PID \ \% \ n \end{array}$ $\begin{array}{l} \bullet \ A[I,I] = \ true \\ \bullet \ L = 1 \\ \bullet \ while \ (L < n) \\ - \ if \ (A[i,k] \ \&\& \ A[k,j]) \\ \bullet \ A[i,j] = \ true; \\ - I = L; \ J = L; \\ - \ L = L^*2; \end{array}$

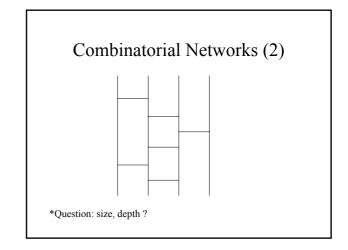
GAP(4)

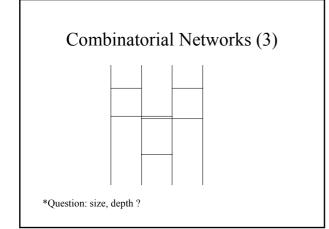
• Notes:

- how much speedup ?

- Run with n3 processors delivers exponential speedup
- Simulanious(!) writes to A[i,j]
- Proof:
 - · After the t'th iteration
 - $L = 2^t$
 - For all 0 <= x,y < n, A[x,y]==true iff there is a path of length of at most L from x to y (by induction on 't')
 - After log n iterations, A[u,v] is true iff there a path from u to v
 - Therefore
 - » Running time is O(log n)
 - » Word size needed is O(log n)
 - » Space bound is O(n³)







Min-max, max-min theorem (1)

- Every mixed min-max, max-min sorting network can be rewritten to pure min-max
- Proof
 - Represent comparators as <a,b,c> tuples where a = level and b,c output channels
 Min-max=b<c, max-min=b>c
 - Represent sorter as list C: 0...s, with s comparators.

Min-max, max-min theorem (2)

// read $c?=c_2$ and b? as b_2

for i:=0 to s if bi>ci then

for j:=i to s Lj=<aj,bj,cj> if bj==b_i then bj=c_i in Lj else if bj==ci then bj=bi in Lj

> if cj==bi then cj=ci in Lj else if cj=ci then cj=bi in Lj

Min-max, max-min theorem (3) Claim 1: after the (i-1)th iteration we still sort bi < ci No change made bi > ci Swap outputs whenever bi or ci is used *below* level 1 Level i can *only* sort By induction we therefore still sort. Claim 2: we end up with only min-max: trivial induction on 'i' Claim 3: we still sort in the same way: given ascending inputs we perform no actions and therefore sort in the same way.

The zero-one principle (1)

- An n-input network is a sorter if it sorts all sequences of 0-1.
 - Impact: no need to test for \mathbf{Z} , 0/1s suffice
- Proof:
 - Define $h_a(x) = 1$ if $x \ge a$, else 0
 - Claim: if for inputs $x_1, x_2...x_n$ a channel carries value B,at level j, then for inputs $h_a(x_1)$, $h_a(x_2)...h_a(x_n)$, it carries $h_a(B)$

The zero-one principle (2) Claim: if for inputs x1,x2...xn a channel carries

value B,at level j, then for inputs $h_a(x1)$, $h_a(x2)$... $h_a(xn)$, it carries $h_a(B)$

$$- J=0: h_a(x1) = h_a(B)$$

- J>0: consider channel i on level j with value B on input
 - Write V(i,j) = B for input x
 - Write $V_a(i,j)$ for input $h_a(x)$
- Suppose no comparator at level j, then by induction (as on the previous j we were OK)
 V_a(i,j) = V_a(B)

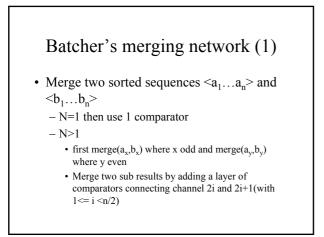
The zero-one principle (3)

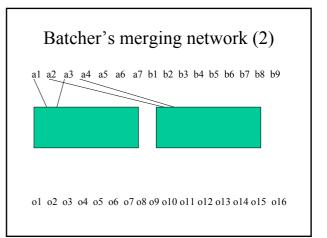
- Suppose exists comparator between channels i and k at level j
 - i<k (=min-max comparator)
 - $V_a(i) = min(V_a(i,j-1), V_a(k,j-1))$
 - $V_a(i) = min(h_a(B_i), h_a(B_k))$ // by induction
 - $V_a(i) = min(B_i, B_k)$ // by def. Of h_a
 - $V_a(i) = h_a(B)$

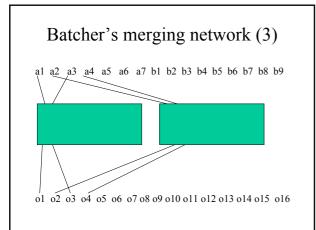
The zero-one principle (4)

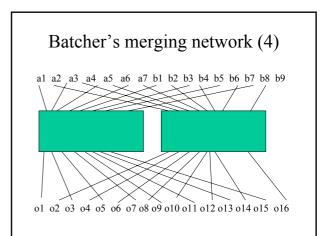
• Proof by contradiction for network K:

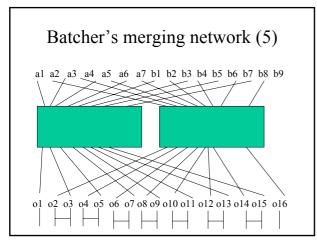
- Assume outputs $\boldsymbol{y}_{1\text{-}n}$ for inputs $\boldsymbol{x}_{1\text{-}n}$
- Assume not properly sorted: $y_i > y_{i+1}$
- Look at $h_a(y_{1-n})$ for inputs $h_a(x_{1-n})$
 - Chooze $a=(y_i+y_i+1)/2$
 - $h_a(y_i) = 1$ $- h_a(y_{i+1}) = 0$
 - Which can't happen by definition of h_a when applied to a sorting network therefore K not a sorting network. Therefore K must be a sorter.





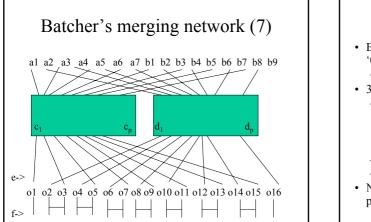


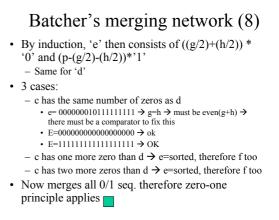


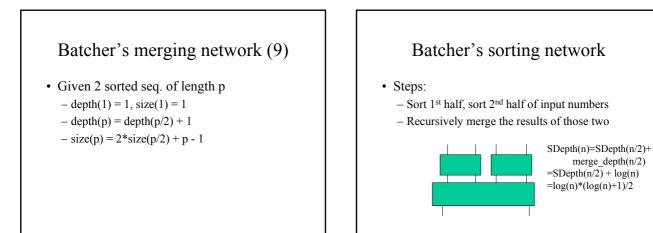


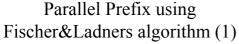
Batcher's merging network (6)

- Does this merge OK ?
- Proof:
 - Assume:
 - n inputs
 - recursive sub-merge was OK for odd/even got ${<}c_1...c_p{>}$ and ${<}d_1...d_p{>}$ with $p{=}n/2$
 - Input-a $< a_1...a_n > : g*'0', (p-g)*'1'$
 - Input-b $< b_1...b_n > : h^*'0', (p-h)^*'1',$
 - Output $\leq f_1 \dots f_n >$





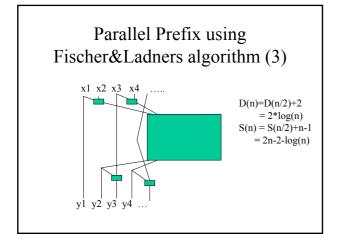


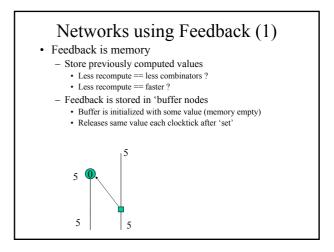


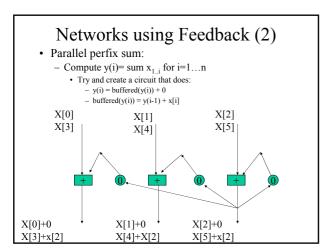
- Given an addition gate
- Given n inputs x_{1-n} and n outputs y_{1-n} - Compute y(i)= sum $x_{1..i}$ for i=1...n
- Naiive solution: (how many times is (x1+x2) computed ?)

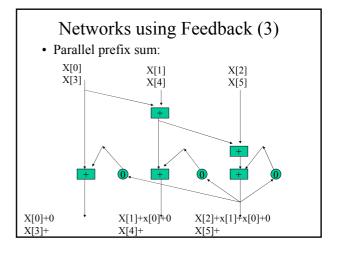
Parallel Prefix using Fischer&Ladners algorithm (2)

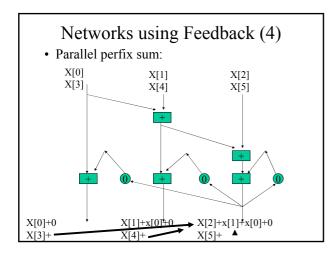
- On input $x_{1...n}$
 - first compute $x_i + x_{i+1}$ for each odd(i)
 - Next compute the prefix sum of these results
 - Use sub network with n/2 inputs
 - i-th output of subnetwork becomes 2*i-th output
 - $((2^*I)\!+\!1)\!$ -th output becomes the I-th output of the subnet + $((2^*I)\!+\!1)\!$ -th input

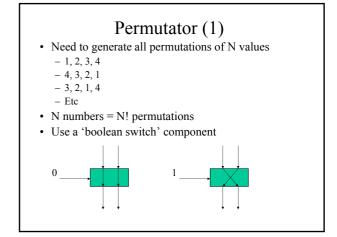


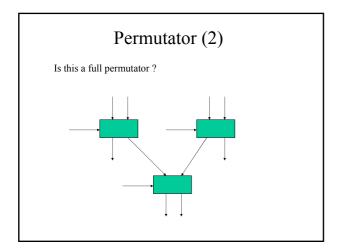


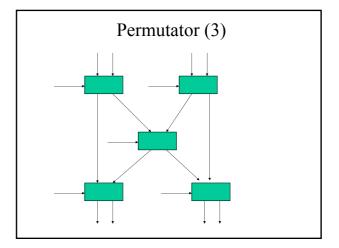


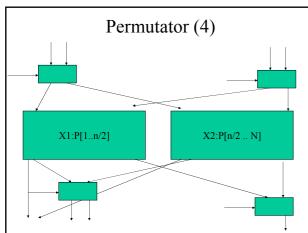


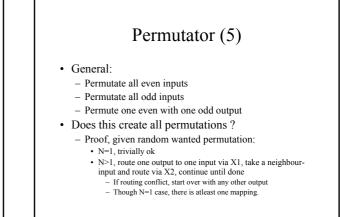












Permutator (6)

• How many switches will I need to permute 5 values ?

See U in 2005 !

- No lecture on 20th or exercises on the 24th
- 10 january next lecture