
1

Parallel Algorithms

Lecture 8: Data Management

Ronald Veldema

Data Management

• What partition of the data goes where
• What granularity do we chooze

– Can’t answer this question in general
• When do we do what

– Can’t answer this question in general

What goes Where ?

• Object X on Machine Y ?
– Compute where the data is ?

• Dynamically ? Statically ?

• How do I get from here to there ?
• Use data structures matching the network ?

• Hierarchical data layout if network is a tree

– Note: we do not require a physical network of some
topology

• Virtual networks

Data mapping (1)

• Map data to CPUs
• In SPMD programs, map partition X to cpu Y
• Block distributing arrays/matrixes such that

accesses will be
– Sequential in memory
– Require as few network accesses as possible

• NP hard when trying to also optimize load balancing

Data mapping (2)

• example: given 1D array and 10 cpus:

int j = cpu_number;
parfor (int i=0;i<1000;i++) {

A[j] = i;
j += number_of_cpus;

}

// Put a[i] on cpu i.

Dynamically mapping work to
network

• Divide and conquer
– Work stealing: steal work from overloaded nodes

• But with data management:
– Steal selectively: steal tasks only where you already have some

data of

• Master-slave
– Master pushes work to idle nodes

• Where master knows the client already has some data

– Idle nodes pull work from master
• Master selects a good task for client

2

Statically mapping work to
network (1)

• HPF
– Programmer specifies data layout for each array
– For best performance programmer needs to

know network layout
• Fortran programs often ‘tuned’ for a specific

network

• MPI
– Send message to cpu #5, because #5 has the

data

Statically mapping work to
network (2)

// map ‘a’ to put every 3rd element on a cpu
for I=0;I<N;I+=3)

a[I] *= 10;

// insert code here to remap ‘a’
// to put every 4th element on a cpu
for I=0;I<N;I+= 4)

a[I] *=4;

Statically mapping work to
network (3)

• Good HPF compilers try and
– Minimize the number of remappings

• Rewrite loops

– Remap a[I] to a’[I] while still changing the rest
of the array

• Overlap communication with communication

Statically mapping work to
network (4)

• Block cyclic distribution
– Divide input in blocks, # blocks>> tasks
– Round robin distribute blocks over machines

• Semi-random block distribution
– Divide input in blocks, #blocks >> tasks
– Machine X has block HashFunction(I)

• Random block distribution
– Distribute blocks using a *real* random function
– Maintain directory somewhere of where block I was

mapped

Replication (1)

• Normally, in parallel programming
– All code is replicated
– Data exists only once

• Data replication is difficult
– Where to place replicas
– Where to find closest replica
– How to keep replicas consistent

Replication (2)

• Replica consistency protocols
– Invalidation protocols

• Upon modification, other replicas are deleted
– Update protocols

• After modification, broadcast your copy
– Merge protocols

• Allow multiple modifying machines, replicas merged in future
– Highest priority
– First come, first serve

– Lazy update
• Only after a while update other replicas

3

Replication (2a)

• Case study: globedoc
– It makes sense that for different

objects/webpages, different replication
strategies are best

• Some pages/objects should be consistent at all times
– A ‘current price & product’ page of a company

• Some pages/objects can be relaxed consistent and
replicated aggressively

– The generic company home-page

Replication (2b)

• Globus
– Millions of users, hundreds of replicas, files can be

VERY large
– Each file has a logical name
– Each replica has a logical+physical name
– File open

• takes a logical name
• Asks replica location service for a physical name given logical

name
• We can then use local name to open file
• Users manually create replicas (using globus_copy_file)

Replication (3)
• Example: lazy partial data replication for

dynamically scheduled independent loop iterations

parfor (int I=0;I<N; I++)
a[I] = b[f()] * c[g()]

Compiler/programmer notices that:
- iterations are independent;
- single iteration depends on { I, f(), g() };
- b, c are readonly. If large:

replicating b and c everywhere would cost
a lot of memory/bandwidth.

Replication (4)

• Maintain a ‘work-queue’ of ‘I’ still to be
done
– At program startup queue contains [0..N]
– Each processor asks ‘master’ and ‘steals’ an

entry
• Master should give entry where there is a large

chance that that machine already has some of the
data.

– Master records where it has sent b[x] and c[x]
– Master guesses/executes f(), g()

Replication (5)
Master Request history
I f() g() target
0 0 0 1
1 1 2 3
2 2 3 4
3 3 2 2
4 …..
5 …..
6 …..

Machine 1 Machine 2
b[0],c[0] b[3],c[2]

Machine 3 Machine 4
b[1],c[2] b[2],c[3]

Machine 3 finishes and asks master for work,
master should give an iteration where machine 3 is able to reuse
one of the replicated b,c arrays

Prefetching (1)

• Fetch data before its needed
– Works both with message passing and with

shared memory models
• How much to prefetch
• Prefetch data even if you might not need it ?

4

Prefetching (2)

• Most modern processors have some form of
prefetch instruction/mechanism
– Pentium4: prefetch <cache-level> <address>

• Message passing:
– When requesting datum X, also fetch X’s

referred-to data
– Stride detection for data accesses

Prefetching (3)

• Data consistency issues

Prefetch a[I]
…..
Use a[I]

a[I] = 34; flush

Cpu 0 Cpu 1

Should cpu 0 see the change to a[I] ?
- depends on consistency model, programming model,

prefetch semantics…

Prefetching (4)

Request_data_msg (a[i], prefetch = b[i])
.
.
.
.
.

/* request_data_msg(b[I]) */
.
.
print a[I], b[I]

…
Send_data(a[I],b[I])
b[I] = 323;
…

• Data consistency issues

(sending prefetch request for ‘b’ with concurrent modifications to ‘b’)

Thread Migration (0)
Machine 0 Machine 1

Thread Migration (1)

• Policy
– When to migrate

• Mechanism
– How to migrate

• Different from remote procedure call
– Thread is interupted & moved, not a single function as

with RPC
– Execution on another CPU can last arbitrarily long

Thread Migration (2)

• Policy
– Move a thread to where the most data is to eliminate

network latencies (reduce network trafic)
– Move to less loaded machine (load balancing)
– Move a thread back after N seconds ?
– Move only if local state smaller than data in messages ?
– When to move ?

• After N times sending a message to a specific remote machine
?

5

Thread Migration (3)

• Mechanism
– How to handle open files
– How to handle pointers

• Pointers to local objects
• Pointers on the stack
• Pointers to objects on the stack

Thread Migration (4)

• Case study: “Harmony”
– DSM system (shared memory simulation on top

of a message passing: distributed memory
machine)

– Minimize both #messages & load imbalance
• NP hard problem…

– See paper (handed out)

Pointer jumping (1)

• Quickly find data in set of rooted directed trees
• Initially, the pointers are all pointing on wrong

direction

Pointer jumping (2)

• Determine root S(j) of the tree containing
node j for each j in the forest of directed
trees

• Sequential:
– Identify roots of forest
– Reverse links
– Depth first traversal

Pointer jumping (3)
1 2 3 4

9 10 11

15 16

19

Step 1: identify roots of forest

5 6 7 8

12 13 14

17 18

20

Pointer jumping (4)

Step 2:reverse links

1 2 3 4

9 10 11

15 16

19

5 6 7 8

12 13 14

17 18

20

6

Pointer jumping (5)

Step 2:reverse links

1 2 3 4

9 10 11

15 16

19

5 6 7 8

12 13 14

17 18

20

19

19

19

19

19191919

19

20

20

20

20

20

20

20

20 20

Pointer jumping (6)
• Input: forest of rooted directed trees

– Root has circular reference to itself so S(I) = I
• Output: S(I) is root of node I

// for every node try and find root in parallel
parfor 1 <= I <= n

S(I) := P(I) // am I root ?
while S(I) != S(S(I)) // already at root ?

S(I) := S(S(I)) // one level deeper

Jump Pointer Prefetching (1)

• When using a linked data structure, add
extra links to double, tripple etc indirections

Class LinkedListNode {
Data d;
LinkedListNode Next;

}

Class LinkedListNode {
Data d;
LinkedListNode Next;
LinkedListNode NextNext;
LinkedListNode NextNextNext;

}
Before…

After…

Jump Pointer Prefetching (2)
While (node != null) {

process(node);
node = node.Next;

}

While (node != null) {
process(node);
prefetch node.NextNextNext;
node = node.Next;

}

Network Properties
• static routing / switched
• bisection width

– how many links can I remove before I divide network
in two disconnected networks

• blocking network
– switch can't be concurrently used by two packets to

different destinations
• fully connected

– Everybody has a connection to everybody else
– Use virtual networks to create…

• neighbour connected

Omega network (1)

• how to route, crossbar switch

Address
== 0

data1

data2

Address
== 1

data1

data2

data1

data2

data2

data1

7

Omega Network (2)

00

01

10

11

00

10

01

11

(shift left source address to get to destination address)

Latice (mesh) networks (1)

-Everyone is connected to a number of neighbours
-Many spanning trees possible…

Latice (mesh) networks (2)

3 2 3 4

- Everyone is connected to a number of neighbours
- Many spanning trees possible…

2 1 2 3

3 2 3 4

Latice (mesh) networks (3)

1 2 3 4

- Everyone is connected to a number of neighbours
- Many spanning trees possible…

2 5 4 5

3 4 5 6

Latice (mesh) networks (4)

4 3 4 5

1 2 3 4

4 3 4 5

Map tree to mesh:
break all cycles by not using some links

Latice (mesh) networks (5)

• Systolic matrix multiplication
– NxN matrix
– NxN mesh

• Systolic = matrixes are slowly
‘absorbed/consumed’ by the network

8

Latice (mesh) networks (6)

• Each time step
– Cpu x,y computes

• c[x,y] += a[x,m]*b[m,y]

– Sends a[x,m] to east neighbour
– Sends b[m,y] to north neighbour

• In n steps, everybody will have seen all ‘m’
– Log(n) complexity

Star networks

Star networks

Master:
JobDistributor = new JobDistributor();

Each slave machine:
Master m = get_master();
while not done:

job = master.jobDistributor.get_job();
job.compute();

Hypercube networks (1)

0

0

1

00

0 D 1 D

01

10

11

2 D
000

010

001 011

100
110

101 111

3D

*node I and J are connected if address is 1 bit less or more

Hypercube networks (2)
• Sum array elements on a hypercube

– Element a[I] is on cpu I
– Array size = N then log(n) cpus (n=2d, d=dimension)
– Store result on cpu 0

// d = dimension, x iterates over subdimensions
// I am cpu ‘I’
for x=d-1 to 0

if 0 <=I<=2x-1 then // should I participate this iteration ?
a[I] = a[I] + a[I[x]]

Hypercube networks

• Given a 8 node cluster: n=8, then 8=23, we thus
have a 3D hypercube

• First iter:
– a[0] += a[4], a[1]+=a[5], a[2] +=a[6], a[3] += a[7]

• Second iter:
– a[0] = a[0]+a[4]+a[2]+a[6],
– a[1] = a[1]+a[5]+a[3]+a[7]

• Third iter:
– a[0] = a[0…7]

• Question: did we use static or dynamic routing ?

9

Bus based networks (1)

cpu

cache

cpu

cache

cpu

cache

Bus based networks (2)

• Fast broadcast
– Everybody receives a packet at the same time

• Bus snooping
– Everybody listens to all packets, even the

packets not destinated for you

Shared Memory Broadcast...

Class A {
volatile int value;

synchronized void bcast(int x) {
value = x;

}
}

On a SMP machine, with a snooping bus:
- the ’value’ assign is seen by all processors
- all processors evict the old value from the cache

Matrix Transposition
• Diagonally mirror a 2D matrix

Matrix = NxM
(1,1) (1,N)

...............
(M,1) (M,N)

then transpose =
(1,1) (M,1)

...............
(1,N) (M,N)

now map (i,j) to processor P(i)

1) Matrix transposition = data remapping problem
2) Won’t it be better to allocate matrix in transposed form ?

Matrix Multiplication (1)

• Let A and B be a n*n matrices
– compute C = A*B

This requires n multiplications and n-1 additions per element of C
So it takes multiplications and additions to compute C

Martrix Multiplication (2)

• Replicate A, B (read-only afterall !)
• Each cpu computes row J of C[I, J]
• Afterwards, merge rows to create complete

C matrix

10

Inproving Matrix Memory Layout
(1)

Access element A[I][j] of NxN matrix using:
ptr + (N*I) + J

Inproving Matrix Memory Layout
(2)

Access element A[I][j] of NxN matrix using:
ptr + (n*I) + J

n

n

Access element A[I][j] of NxN matrix using ?

Mapping Matrix to Network (1)

• Map:
For (int I=0;I<N;I++)

For (int I=0;I<N;I++)
matrix[I][I]= matrix[I*3][I*3];

– To a 2D mesh with N cpus
• Put every 3rd element on a cpu

Mapping Matrix to Network (2)

0,0 0,3 0,6 0,9 0,12 0,15 0,18

3,0 3,3

6,0

9,0 9,18

Mapping Matrix to Network (3)

• Tradeoffs:
• How to map array with different concurrent access

patterns ?
• Example:

A[I] = A[j*2] * N
A[I] = A[j*3] * M

Chooze between every 2nd or every 3rd on a cpu….

Mapping Matrix to Network (4)

• Compile time unknowns can make a-priori
data-mapping hard
– A[B[I]]
– A[string2int(commandline[1])]

11

Barrier on a hierarchical network (1)
(barrier = point in code where cpus wait until all cpus have

reached that point on the program)

B

Wants to enter barrier.

Barrier on a hierarchical network (2)
(barrier = point in code where cpus wait until all cpus have

reached that point on the program)

1

B

1)Wants to enter barrier.
2) Sends “enter_barrier” to parent,

parent sets “child_block_counter” to ‘1’

Barrier on a hierarchical network (3)
(barrier = point in code where cpus wait until all cpus have

reached that point on the program)
1

2

BB

1)Wants to enter barrier.
2) Sends “enter_barrier” to parent,

parent sets “child_block_counter” to ‘1’
3) Same as 2, parent sends block message to parent

Barrier on a hierarchical network (4)
(barrier = point in code where cpus wait until all cpus have

reached that point on the program)
2

22

BBBB

1) Root receives a block counter for each of its
Child nodes and sends a
‘barrier_release’ message

Barrier on different networks

• Hypecube
– Same as tree

• Star
– Central barrier on center node

• Mesh
– Create virtual topology

• spanning tree

