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Parallel Algorithms

Lecture 9: Simulations

Ronald Veldema

Introduction

• Most large scale scientific computing 
performed is some form of simulation
– Simulation can always use

• A few more objects to simulate
• Smaller timesteps
• More timesteps
• More precision 
• Real time behaviour

– Computational steering

Grand Challenges

• “Grand Challenge applications are 
fundamental problems in science and 
engineering with broad economic and 
scientific impact. They are generally 
considered intractable without the use of 
state-of-the-art massively parallel 
computers. “

Grand challenge: modelling the 
Sun

• Why ?
– Solar flare prediction, improve general physics, etc
– There exist a number of theoretic models for the Sun
– There are numerous observations 

(xray/visual/magnetic)

• Which model is (most) correct?
– Processes not well understood
– Simulation is the only way to tell…

• 3D and O(10243), 60TByte memory, 4000FP’s per grid point
• Multi teraflop range computing…

“fixed time step”

• A simulation system 
– Integration over time 
– Each time step, all individuals in the simuation 

are updated by advancing ‘simulated time’ by a 
constant delta

“variable time step”

• Integration over time
• Whenever the simulation becomes 

‘interesting’ take smaller time steps
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Monte Carlo Simulations

• Start with ‘random’ or ‘reasonable’ initial 
conditions
– For example, place simulated individuals somewhere in 

a grid
• Pick a random individual

– Move in random way
– Check if movement is allowed

• If allowed, update the whole system to take movement into 
account

• If not allowed, take back movement as if it didn’t happen
• http://sic.epfl.ch/SA/publications/SCR95/7-95-21a.html

Finite Element Methods (1)

• What is a finite element ?
– Take a continuum model

• discretize.
• Limit size of continuum

– Each element of discretized continuum is a Finite 
element

– Useful if
• Global continuum system is too complex

– Break it down into ‘primitive elements’
– Simulate the primitive elements seperately (divide & conquer 

style)
– Sum the effects of the individual parts somehow to approximate 

the continuum

Finite Element Methods (2)
• Example: compute PI using the finite element 

method (d=2*r, L=pi*d, pi=L/d)
• N = 8, pi = 3.06        N = 32, pi = 3.13

r
2rsin(pi/n)

N = 4

r

2rsin(pi/n)

N = 8

Bio Computing (1)

• Has large computational requirements
– DNA sequence alignment
– Protein database search
– Molecule matching (see if molecule X can be 

attached to molecule Y)

Bio Computing (2)

• DNA sequence alignment
– DNA scanning machines deliver chunks of dna strings

• We want the large complete string, not the fragments

– Dna scans deliver large amounts of DNA fragments
– DNA encoded as string of base pairs (A, C, T, G)
– Human has 48 chromosomes, *3*109 bases

Bio Computing (3)
• DNA sequence alignment example

Have string 
ACTGAGCTTCAC

And string 
CACAGAGTATC

Head-tail match, thus make a larger string. 
- use probability that it’s the correct match

before making the decision to merge
- potentially large numbers of possible matches

to consider
- 3 Gbytes of input * N times for maintaining 

probable matches….
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Bio Computing (4)

• Protein Folding problem
– Given a sequence of amino-acid molecules, find the 

least energy 3D configuration
• C3OH3CHCOGCS3…..

Z

Y

x

Bio Computing (4a)

• When able to predict the correct stable 
folding of an arbitrary protein
– Can see if it ‘fits’ inside another molecule

• If fit then possible medicin (protein blocker for other 
protein)

– See if surface properties equal to other 
molecule in 3D

– etc

Bio Computing (5)

• Protein Folding
– Partially embarasingly parallel

• All posible folding can be tried in parallel
– Misses cut-offs
– Testing if a state is possible is non trivial... 

Bio Computing (6)

SequentialFindMinimumEnergyConfiguration(mol)
{

Queue = empty
Min_energy=energy(mol) 
Min_config=mol
Put mol in queue

while not queue is empty 
m = queue.get();
for I=0 to #joints in m

m’=twist joint I in m
if(m’ is valid configuration)

put m’ in queue
if  energy(m’) < min_energy

min_energy = energy(m’)
min_config = m’

Bio Computing (7)

ParallelFindMinimumEnergyConfiguration(molecule mol)
Queue = empty
Min_energy=energy(mol)
Min_config=mol
Put mol in queue
Parallel while not queue is empty 

m = queue.get();
for I=0 to #joints in m

m’ = twist joint I in m
if (m’ is valid configuration)

put m’ in queue
if  energy(m’) < min_energy

min_energy = energy(m’)
min_config = m’

Atmosphere modelling (1)

• Simulate wind, clouds, precipitation, etc 
that influence wind & weather

• Uses basic physics (mechanics, fluid 
property formulas)
– Conservation of mass, energy and momentum
– Hydrostatic approximation
– Gas state equations 

• presure = density * temperature * height
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Atmosphere modelling (2)
• First try, put everything on a 3D grid
• Each grid point = 1 task

– Note: points in grid don’t move, they get different 
values

Atmosphere Modelling (3)

• Every grid point
– Communicates with 11 others
– Most communication is horizontal

Atmosphere modelling
• Agglomeration

– Each grid point = 1 task
• Nx * Ny * Nz tasks

– Too many

– Most communication is horizontal, thus 
agglomerate mostly horizontally

• Load imbalances
– At night no radiation in physics model
– Clouds only at threshold humidity

• Question: is this a finite element simulation ?

Particle Simulation: 
particle - particle method (1)

• Accumulate forces by finding the force 
F(i,j) of particle j on particle i,

• Integrate the equations of motion (which 
includes the accumulated forces), and 

• Update the time counter. 
• Repeat for the next time step. 

Particle Simulation:
Particle – Particle (2)

• Particle of mass M1 attracts other particle 
with mass M2 with:
– F = (G * M1 * M2 / r3)*r

• G = gravitational constant
• R = distance

– Newton: F = MA, A = F/M
– V = V + A
– Pos = Pos + V, for each time step

Particle Simulation:
Particle – Particle (3)

• With N particles: N-1 times the operations
• O(N2) complexity
• When particles are far apart, use large 

timesteps
– When closeby, use smaller timestep
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Particle Simulation: Barnes-Hut

• Observation:
– With the particle-particle method

• particles that are far away deliver almost the same 
forces to a particle

• If really far away, particles that are far away can be 
summarized into a ‘super-particle’ 

Particle Simulation: Barnes-Hut

1. Build a octtree
2. For each subcube in the octtree, compute 

the center of mass and total mass for all 
the particles it contains, 

3. For each particle, traverse the tree to 
compute the force on it. 

Particle Simulation: Barnes-Hut
step 1: build octtree

• Step 1 communicates

Particle Simulation: Barnes-Hut
step 2:compute center of pass

- Within sub-cube, particle particle method. Compute forces 
to outside particles using center of pass of other subcubes.

Particle Simulation: Barnes-Hut
step 3: compute pairwise forces 

within cube
• Step 3 has no communication

Particle Simulation: Barnes-Hut
step 4: compute intercube forces

• Step 4 may communicate
• Each particle computes force against center 

of mass of other cube, not against all 
particles in other cube
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Particle Simulation: Barnes-Hut
step 5: move particles

• Update position, velocity, acceleration of 
each particle
– Pos += Velocity
– Velocity += Acceleration
– Acceleration = Sum directed forces / Mass
– Etc (same as particle-particle method)

Rendering

• Parallel raytracing
– Simulate individual ‘rays’ of light

• Radiosity rendering
– Simulate light as an amount of energy that is 

emitted by each surface

Raytracing (1)

• Shoot a ray from your eye towards each 
pixel of the screen
– The ray’s color is black
– When hitting an object, bounce of it/into it etc 
– When hitting a light source, take over the light 

source’s color
– When returning from the recursion from a hit 

object, attenuate the ray’s color

Raytracing (2)
• Note: each ‘ray’ of light is independent of 

all others
• Note: some rays are more computationally 

more complex than others

Little computing to be done

Lots of computing to be done

Raytracing (3)

• Assign to each processor a fixed partition of 
the screen ?

• Divide screen in fixed size squares ?
• Divide and conquer the screen ?

Radiosity (1)

• Divide objects of scene into patches
• Each patch receives some energy from all 

(visible) others
• Each patch emits some of its received 

energy back to all others
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Radiosity (2)
For each patch P do

P.energy = energy_from_lightsource(P);
for each patch L do

P.received_energy += L.energy * 
angle(P,L) * 
L.material

For each patch P do
print on screen if P visible with color P.color * P.energy;

Radiosity (3)

• Create a par-for loop for each ‘patch’ ?
• Create a par-for loop for each patch’es 

‘gather energy’ loop ?
• Can we optimize ?

– Note: some patches not visible from others…
– Note: energy transfer for some patches easier to 

compute then others (load imbalance !)


