
1

Parallel Algorithms

Lecture 11: Fault tolerance

Ronald Veldema

Introduction (1)

• all networks are troublesome (bit errors)
• ``failures can be as frequent as one every 

two days on 2000 processors.''
– http://csmr.ca.sandia.gov/projects/ftalgs.html

• Large ibm blue gene:
– 1 failure every 6 hours..

• large simulations can take weeks...

Introduction (2)

• intro: all machines are troublesome 
(hardware failures: disks, fans)

• cosmic rays: flip single bit in memory, bus.
• Maybe once every compute year.
• But what if 10000 parallel machines ?

What does this have to do with 
Parallel Algorithms ?

• Parallel programs need to deal with failures
• Parallelism not for speed but for fault 

tolerance
– Execute some program twice in parallel and 

check that results are the same

What can we expect to fail

• network bit errors
– single bit, burst errors

• machine crash
– before or after generating faulty data
– disk failures

• memory bit flip 

Theory..

• fault tolerance = detection + recovery
• Theory people: fault tolerance = extra states 

in process state diagram



2

Exception handling

• ``fault tolerant program design''
• check return values

– has anybody here ever checked the return value 
of ``printf'' ?

• try {} catch {}

Handle problems using parallel 
programming: work duplication

• duplicate all work
– Wastes resources

• duplicate all data
– Wastes resources

• duplicate all work and all data
– Waste even more

• Question: does duplication handle 
– Data corruption ?
– Machine errors ?

Checkpointing

• Checkpointing is the process of saving the 
complete state of your program to non-volatile 
storage:
– Call-stack (local variables, parameters)
– Allocated objects
– Global variables
– Etc.

• A ‘restore’ then takes the checkpoint, restores it 
and execution can continue as if nothing happened 

Checkpointing (1)

• pessimistic / optimistic ?
• partial recompute

– side effects ?
– open file descriptors ?

• memory exclusion
• when ?
• where to store checkpoints
• checkpoint whole cluster or single 

machines/thread

Checkpointing (2)

• coordinated
– coordinator tells everybody to create a 

checkpoint
– needs all cpus in cluster to simultaniously

checkpoint
– Blocking
– non-blocking

Checkpointing (3)

• Uncoordinated
– ONLY when tasks independent

• (as otherwise we would restore the cluster to 
inconsistent state when restoring machine 1 which 
assumes message sent while machine 2 is about to 
wait for it etc)

– SPMD programs: checkpoint each barrier
– pure divide and conquer:

• depend only on parameters/return values



3

Checkpointing (4)

• in flight messages ?
– Message arrives as checkpoint has just been 

made but sender already assumed message
delived.

– After restore, message needs to be reposted !

Checkpointing (5)

P1

P0

CRASH (temporary/forever)

Send-msg, wait-for-reply msg……………………

Recv-msg, send-reply

Atomic Transactions

• lost lock msg
• lost data msg
• lost unlock msg
• rollback 

– while other machines have already mutated data

thread/process migration

• When notified that machine X is going 
down.

• When user logs in on machine
– Non dedicated clusters
– Condor

denial of service

• sometimes because of bugs...
• challenge based solvers

inherently fault tolerant 
algorithms or naturally fault 

tolerant algorithms
• 2/3 group voting for correct answer
• approximation algorithms
• many AI codes are heuristic based:

– on failure find slightly less optimal solution. 



4

Inherently fault tolerant 
algorithms

• Group voting for best answer
– 2/3 voting
– Implement multiple heuristics where each 

returns a value and a ‘confidence’ factor
• One machine fails we only have less to chooze from

Inherently fault tolerant 
algorithms (1)

• Genetic algorithms
– Remove part of population 

• One processor dies -> part of population no longer 
available

• Random mutation can reconstruct the population 
that we missed

Inherently fault tolerant 
algorithms (2)

• Large neural networks
– Take away a single neuron and the system will 

‘learn’ to function without it


